	結果が2択	[O • X]	結果は程度(複数)
	「合格不合格」	「あり・なし」	「数値」「点数」「金額」とか
どっちを 使う?			
使う?使わない?			t 検定
2択			
量は			

| 結果がバラバラだから、割合は無理!

結果の平均を比較してを検定

答え複数

Α	0)	13	
В	12	13	
C	10	0)	
D	10	7	
E	12	16	
F	11	7	
G	13	11	
Н	11	15	
	11	80	
J	11	11	
平均	11	11	

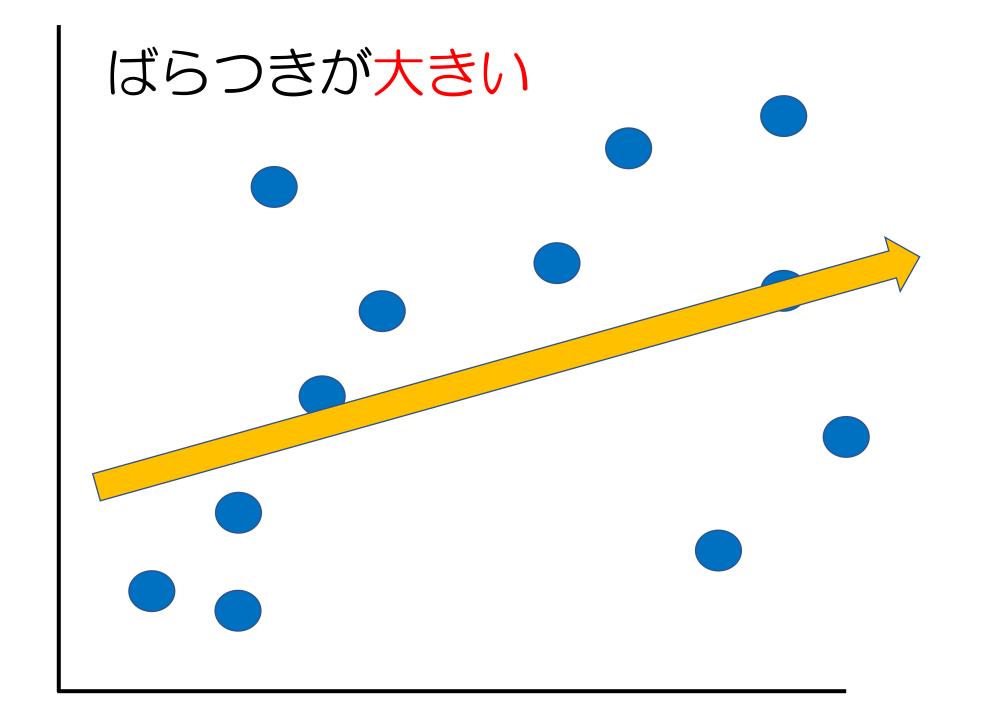
平均が同じでも

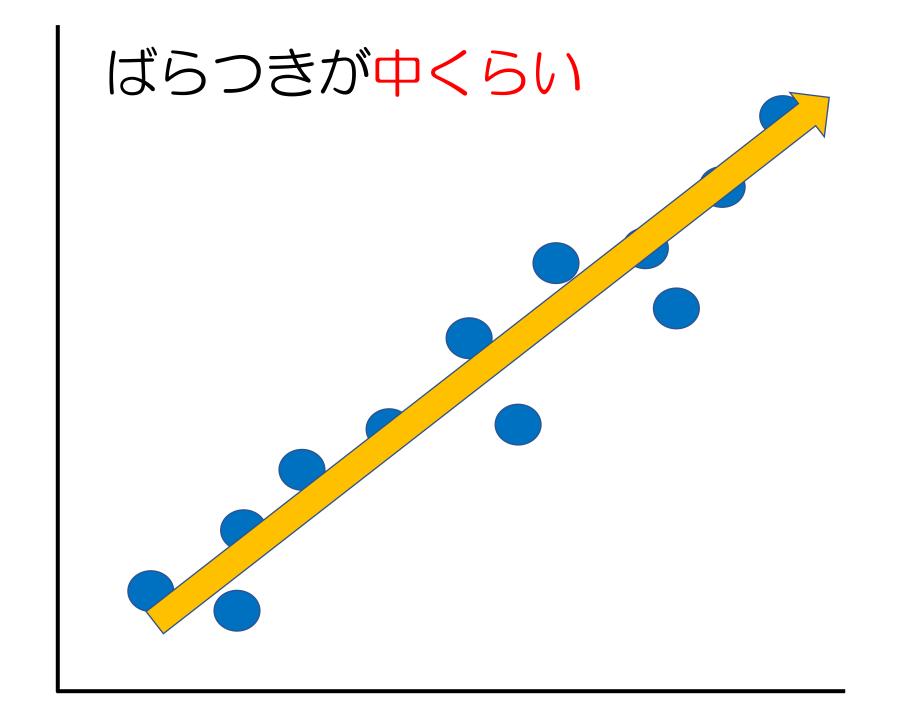
意味が違う!

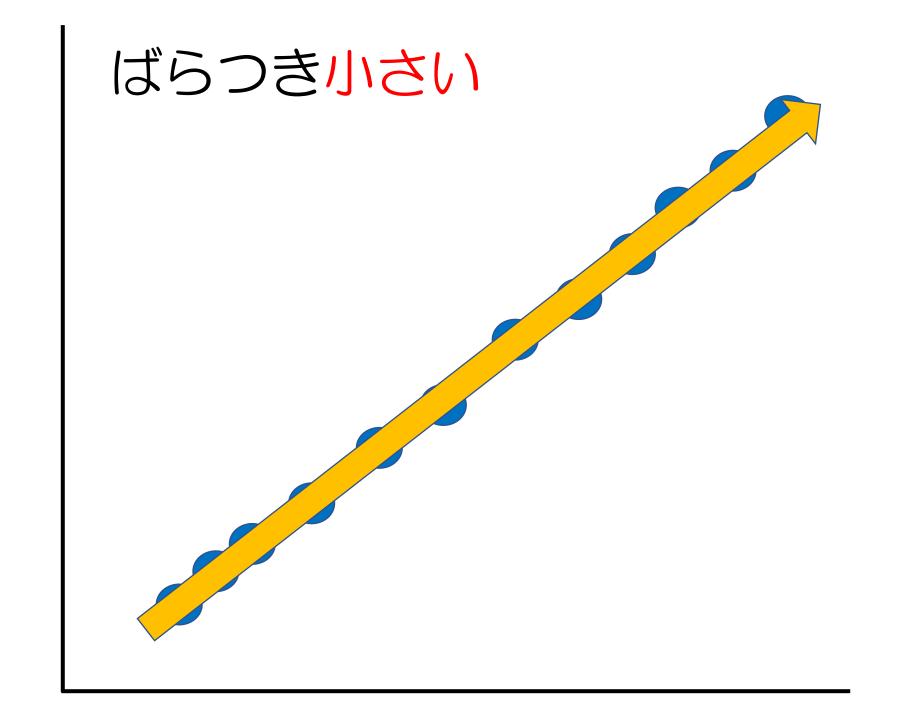
ばらつきは

左:小さい

右:大きい







必要な標本数を考えるとき重要なのが 「誤差」(ばらつき)の割合

「誤差が少ない」

⇒ 少ない数でもだいたい正確

「誤差が多い」

⇒ 少ない数では不正確

「効果量 d 」 介入によってどれだけ変化が起きたか? を表す値(通常-3 から 3 の範囲)

例えば、新薬を飲んだグループと、 飲まないグループを比較して <u>薬の効果がどの程度あったか</u> を数値で示したのが効果量

「効果量 d 」 介入によってどれだけ変化が起きたか? を表す値(通常-3 から 3 の範囲)

```
例えば、 d=0.1 効果がほとんどない (2つの間に差がない) d=1.0 効果がめっちゃあった(2つの間の差が大きい) d=10 ありえない結果 (データミスとか)
```

「効果量 d 」 介入によってどれだけ変化が起きたか? を表す値(通常-3 から 3 の範囲)

```
例えば、 d=0.1 効果がほとんどない (2つの間に差がない) d=1.0 効果がめっちゃあった(2つの間の差が大きい) d=10 ありえない結果 (データミスとか)
```

代表的な効果量の指標

「Cohen's d」「Hedges'g」「r: 相関係数」

Cohen's d

Hedges' g

効果量	記述的効果量	推定的効果量		
意味	平均値の差を標準偏差で割った値	平均値の差を偏分散の平方根で割った値		
特徴	サンプルの2つの差を記述した値	2つの母集団の差を推測する値		

必要な標本数を考えるとき重要なのが

「誤差」(ばらつき)の割合

とも言えるやんね!

「誤差が少ない」 効果が大きい!

⇒ 少ない数でもだいたい正確

「誤差が多い」

効果が小さい

⇒ 少ない数では不正確

効果量 d とサンプルサイズの関係

効果量が大きい:信号が強い状態

小さなサンプルサイズ(少ない数)でも信号を捉えることができる

効果量が少ない:信号が弱い

大きなサンプルサイズじゃないと信号を捉えることができない

サンプルサイズが小さい

ただ、どっちも可能性!

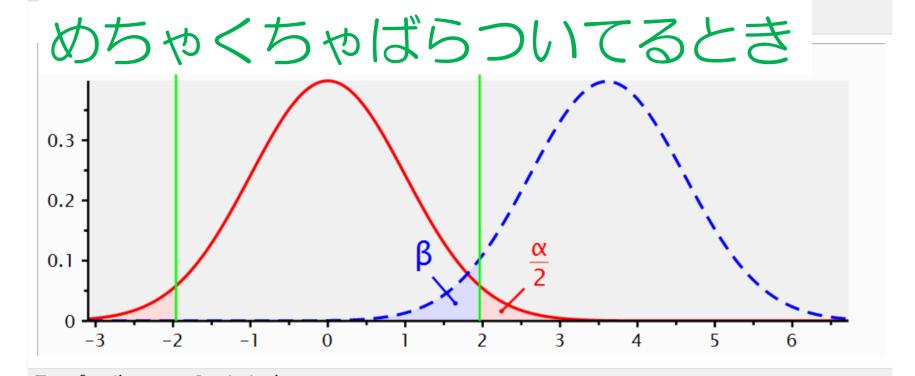
効果量が少ないと検出できない、大きいと検出できる

サンプルサイズが大きい

効果量が少なくても検出できる、大きいとより正確に検出できる

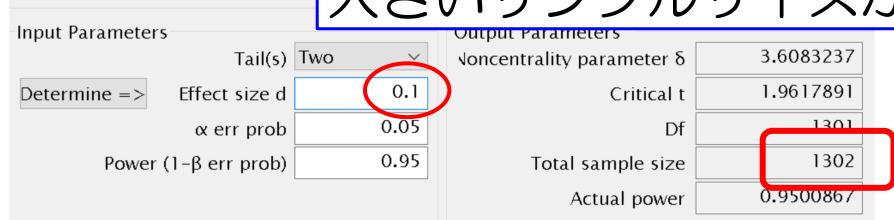
効果量 d とサンプルサイズの関係

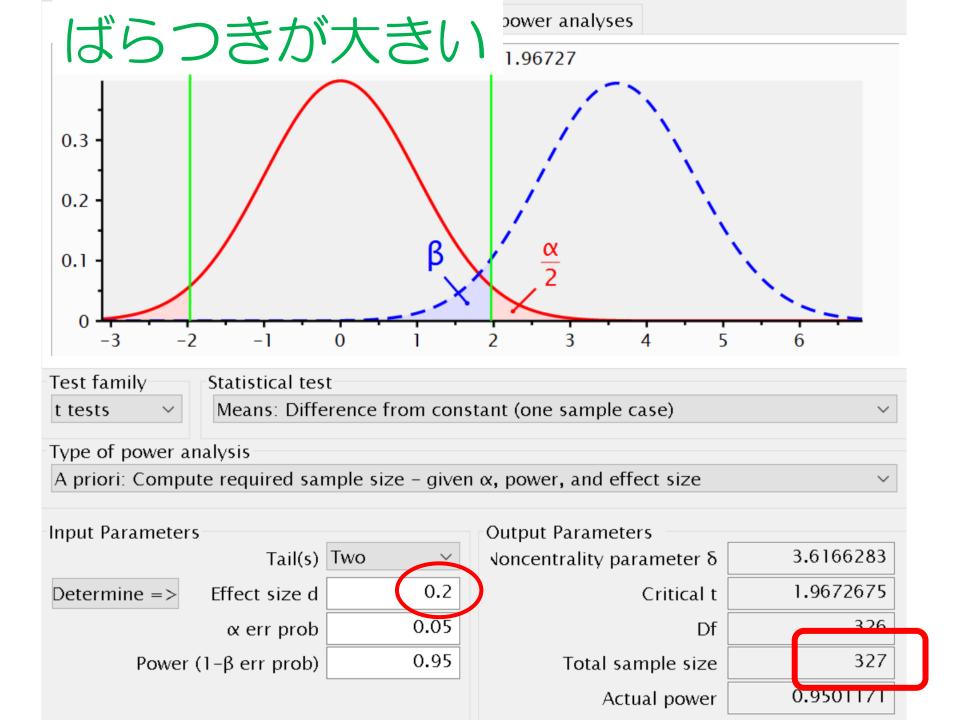
計算はめんどくさいから、 統計ソフトに任せて



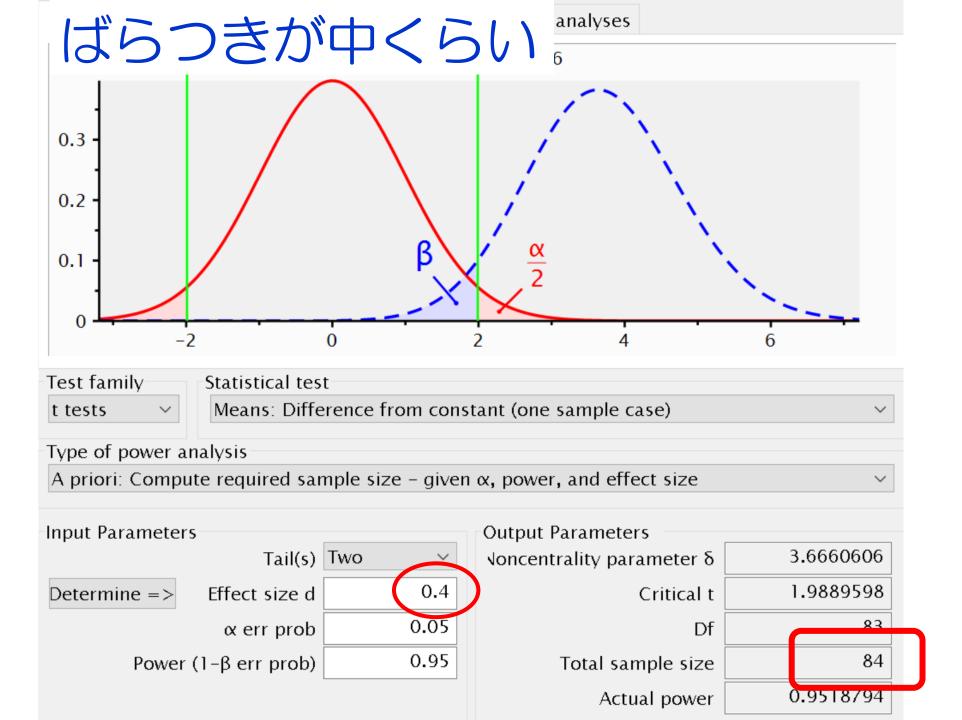
効果量 d が小さい ference from constant (one sample case)

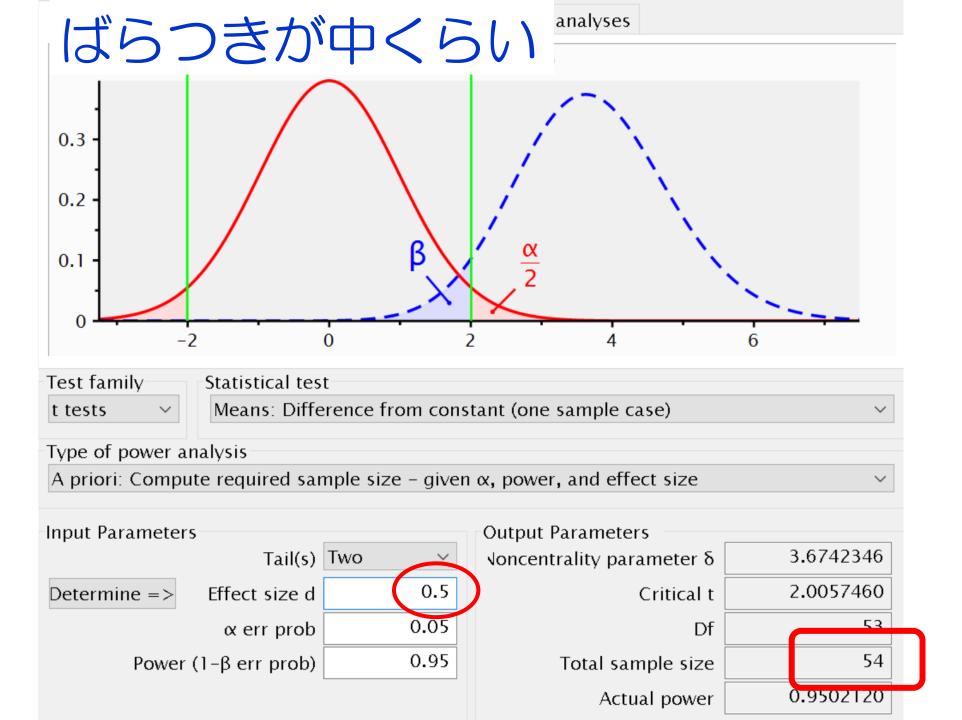
> A priori: Compute required samp ハサンプルサイズが必要! Output Parameters

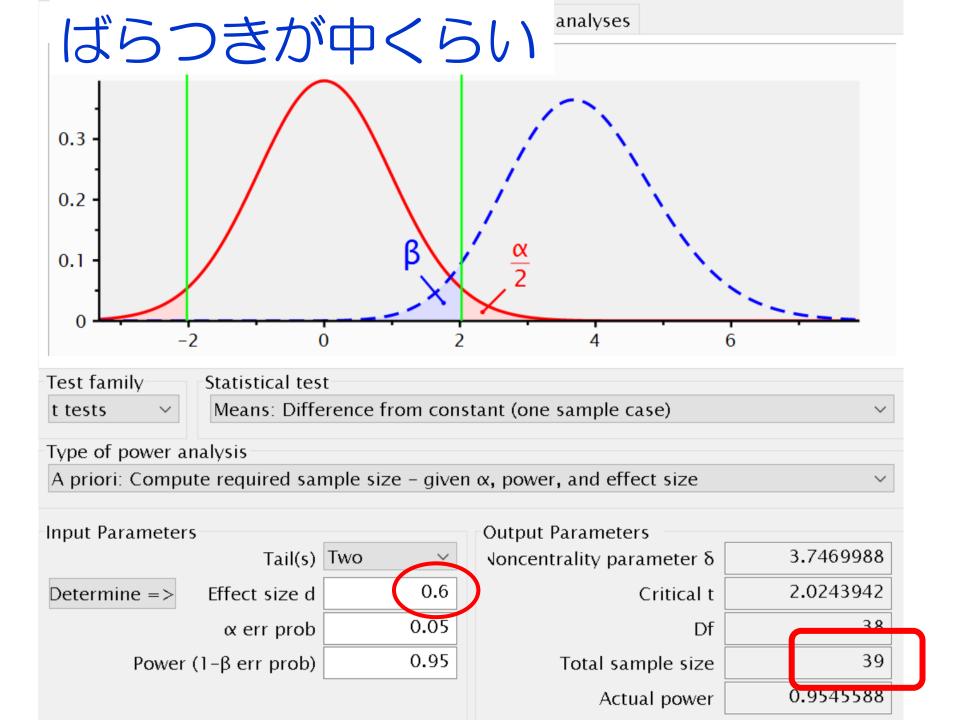


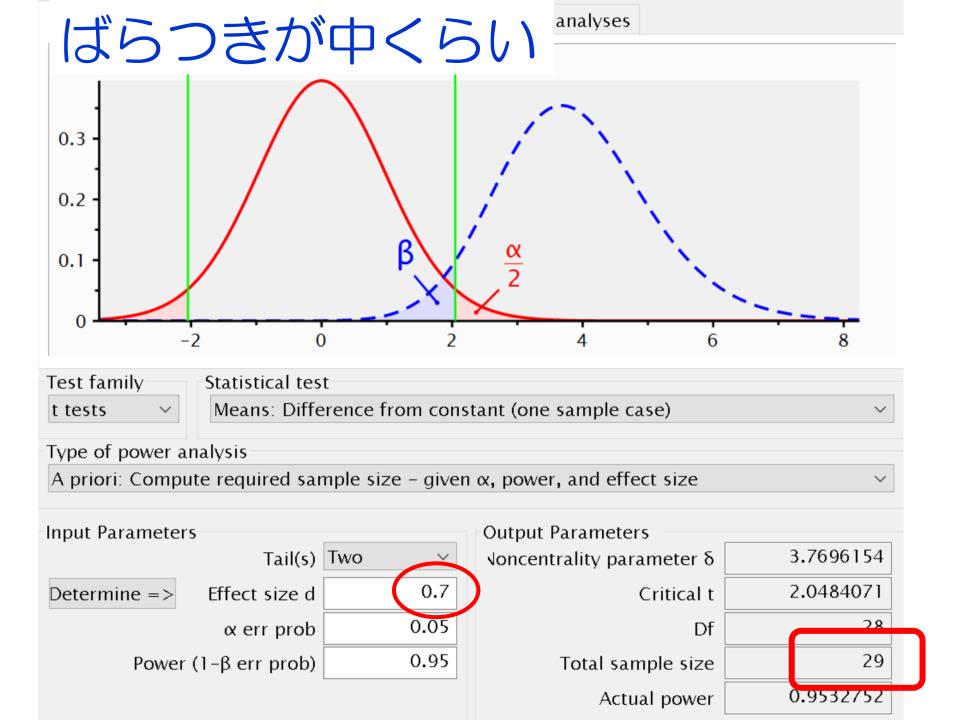


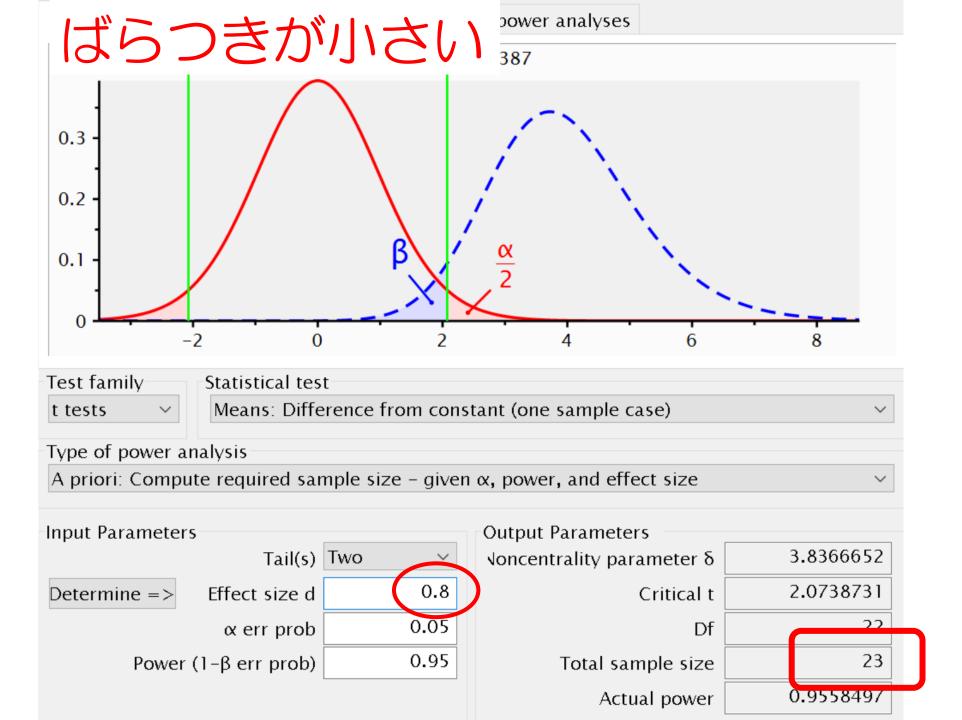


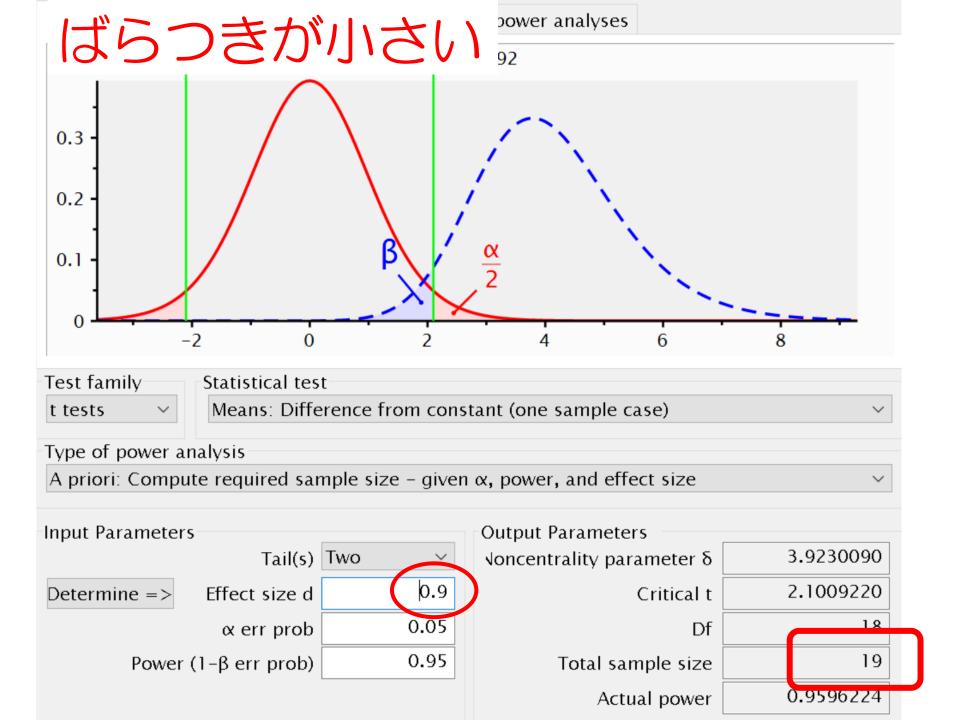


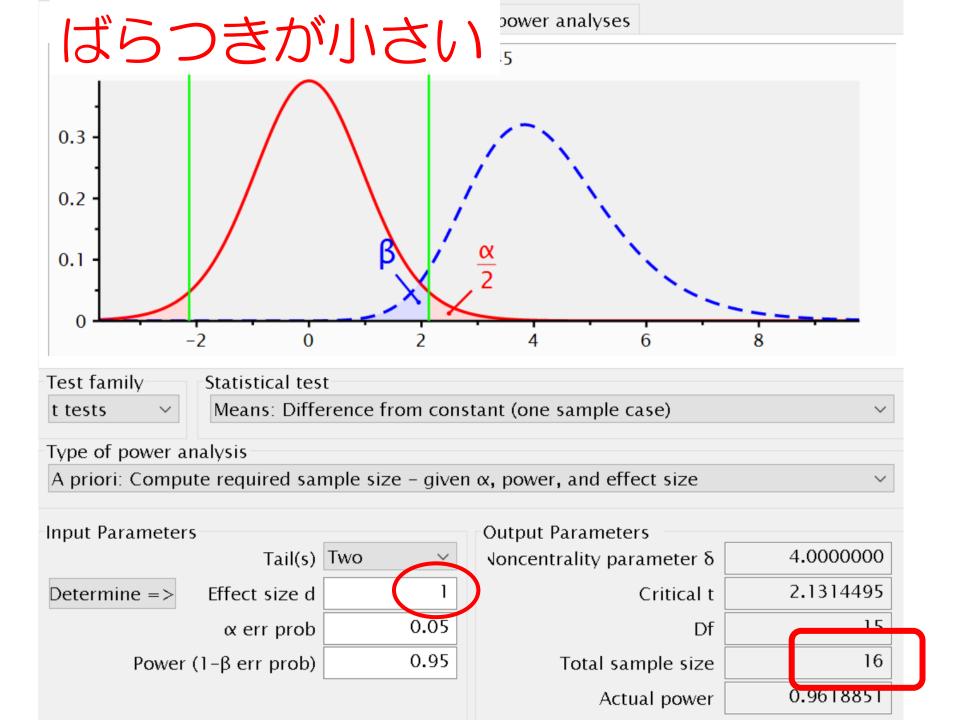


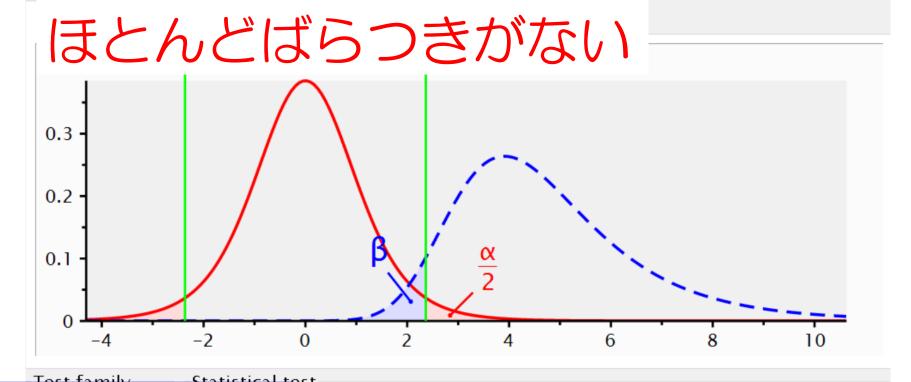










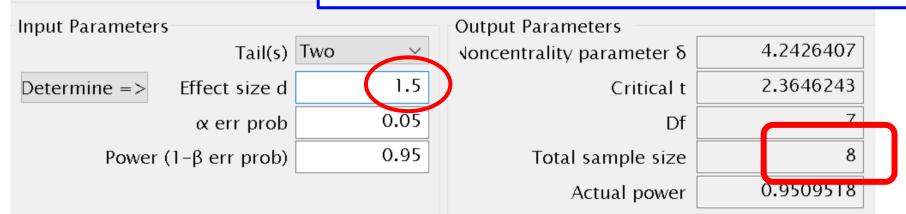


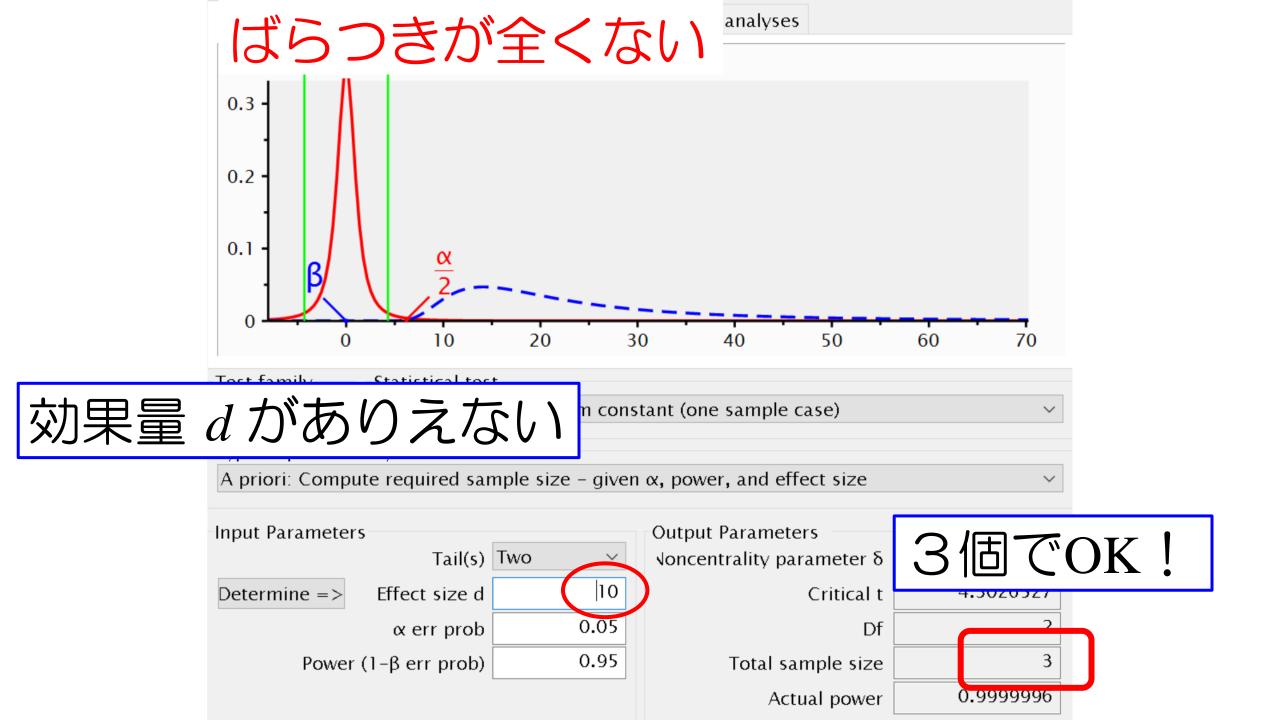
効果量 d が大きい

A priori: Compute required samp

ference from constant (one sample case)

小さいサンプルサイズでOK!





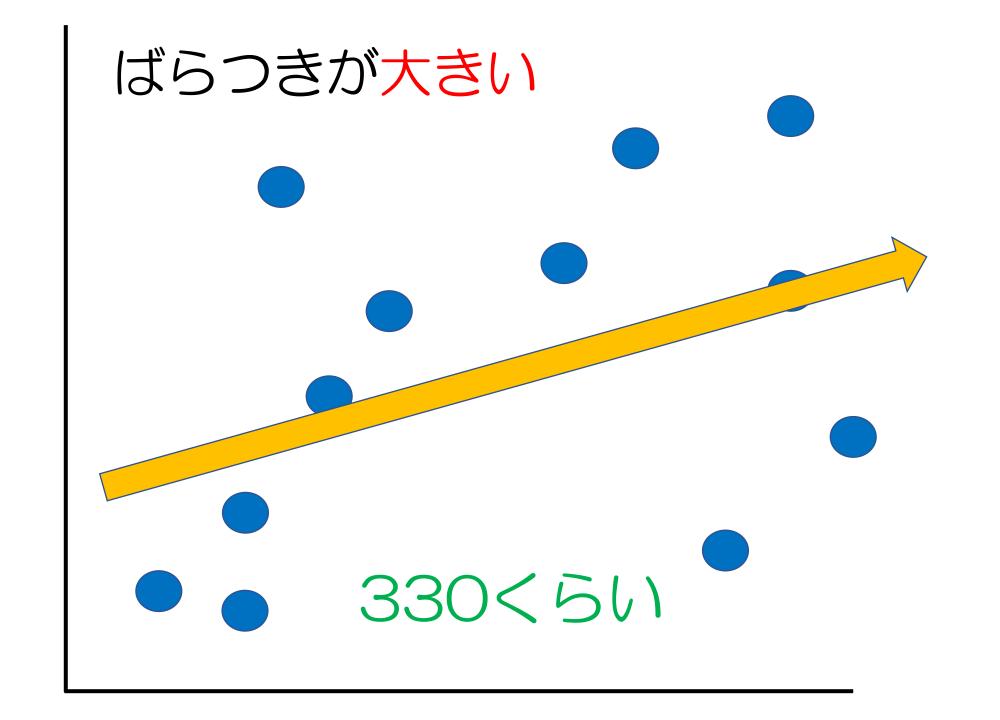
詳しい原理はわからんけど…

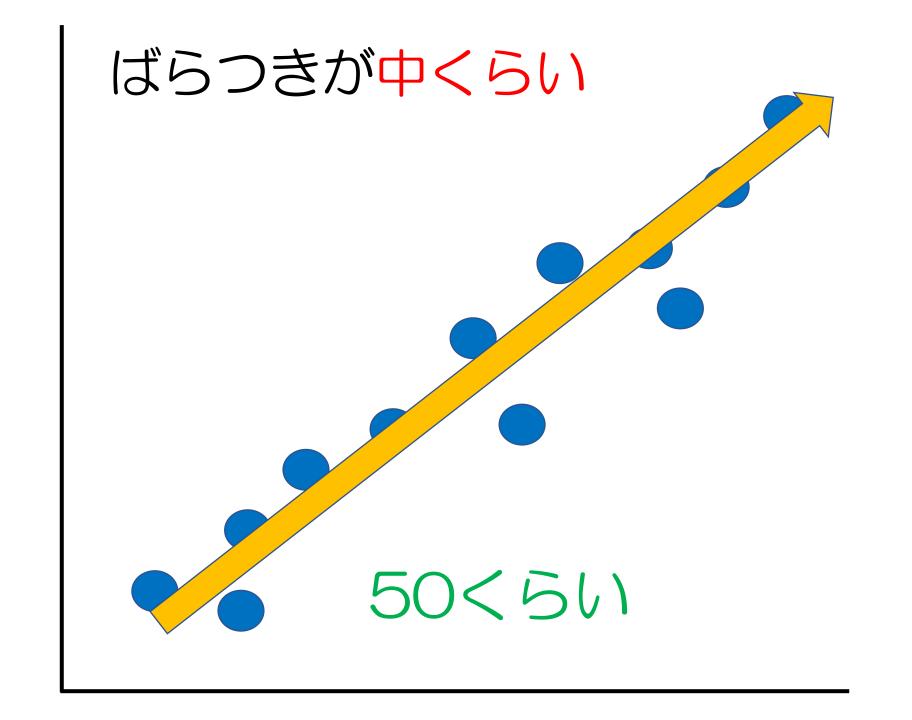
「ばらつき大」:330くらい

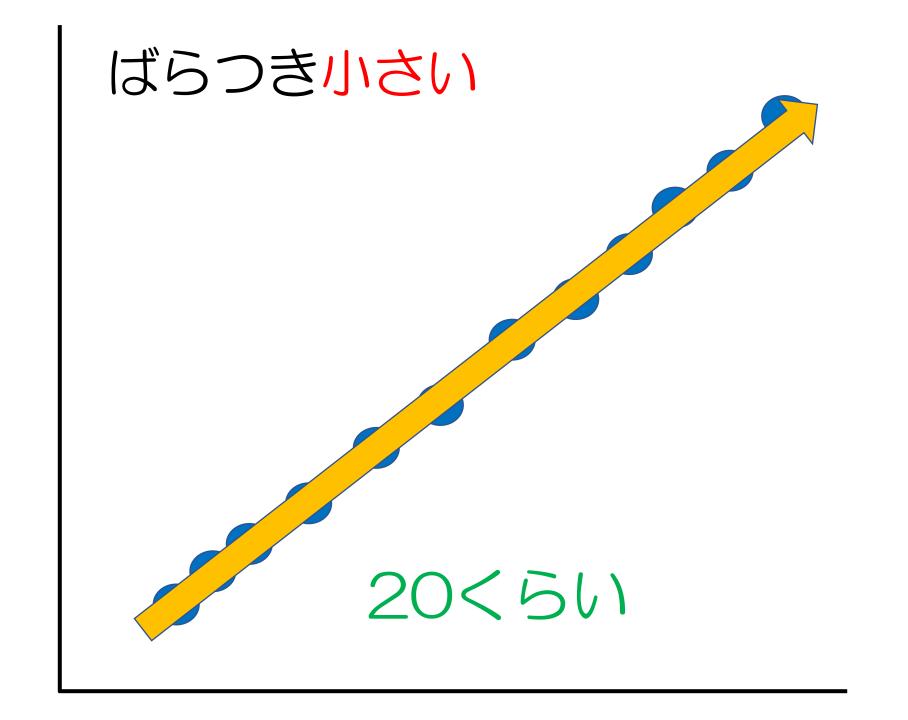
「ばらつき中」:50くらい

「ばらつき小」:20くらい

のところが大体の目安

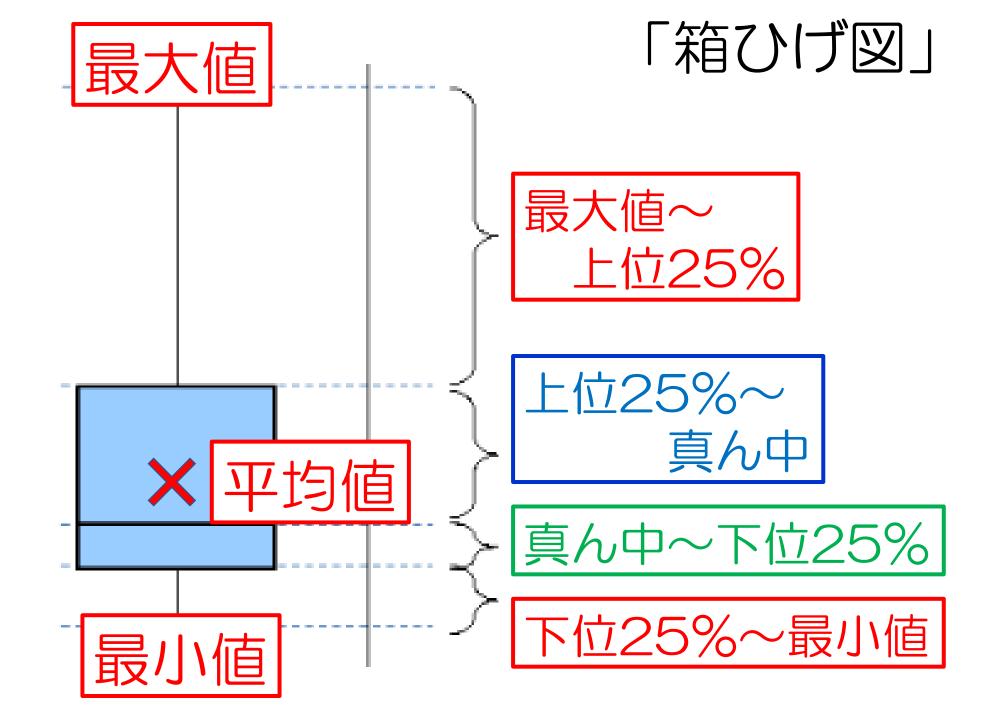




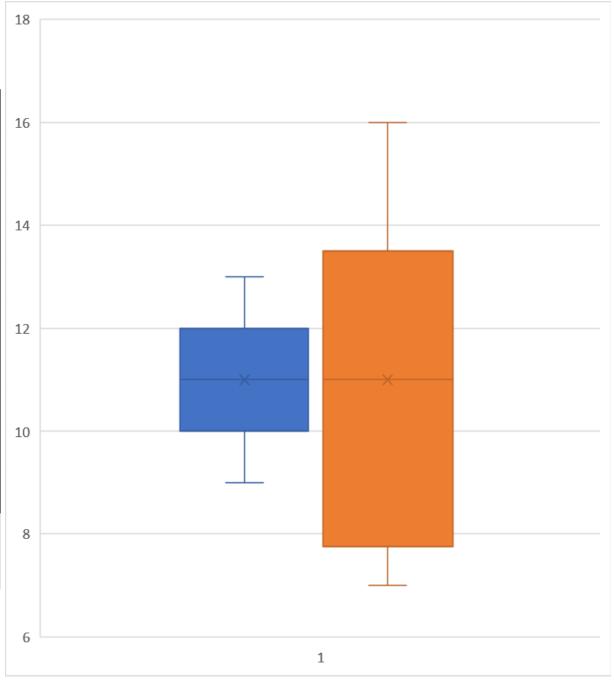


そのばらつきをどうやって表すのか?

「箱ひげ図」



A	9	13	
В	12	13	
B	10	9	
D	10	7	
E	12	16	
F	11	7	
G	13	11	
Н	11	15	
	11	8	
J	11	11	
平均	11	11	



仮説検定 (統計的検定)

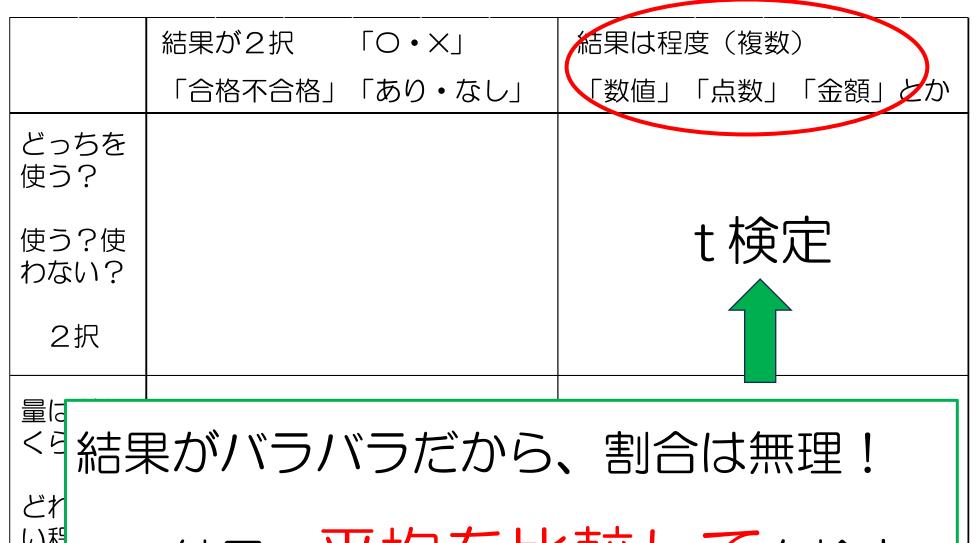
1 カイ二乗検定

2 t 検定

3 回帰分析

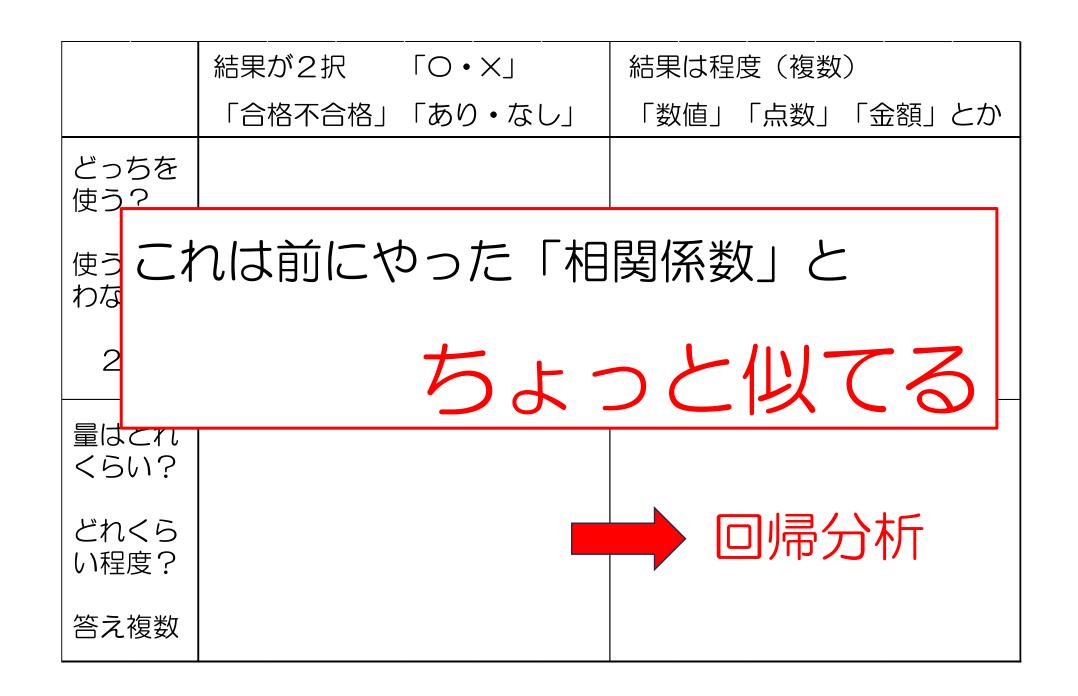
	結果が2択	[O • X]	結果は程度(複数)		
	「合格不合格」	「あり・なし」	「数値」	「点数」	「金額」とか
どっちを 使う?					
使う?使わない?	X二氢	t 検定			
2択					
量はどれくらい?					
どれくら い程度?	ロジステク	ィック回帰		回帰り	分析
答え複数					

	結果が2択	[O • X]	結果は程度(複数)			
	「合格不合格」	「あり・なし」	「数値」	「点数」	「金額」とか	
どっちを 使う?						
使う?使わない?	X二氢	長検定				
2択						
量はどれくらい?	赤と青のお皿で、食べるかどうかの					
どれくら い程度?			割包	うを核	食定	
答え複数						



結果の平均を比較してを検定

答え複数



結果が2択 「〇·×」

「合格不合格」「あり・なし」

結果は程度(複数)

「数値」「点数」「金額」とか

どっちを 使う?

使う?使わない?

2択

4

結果は変わる?

量はどれ くらい?

どれくらい程度?

答え複数

これによって

「相関分析と回帰分析の違い」

相関係数がメイン。1対1のみ

XとYの関係性を見るだけ

XとYの関係式は出てこない

どっちが原因とかは考えない

相関分析

1対1でも、1対複数でも!

XからみたYの変化を見る

数式 Y = aX + b を立てて予測

Xが原因でYが結果として進める

回帰分析

回帰分析は意外と簡単!

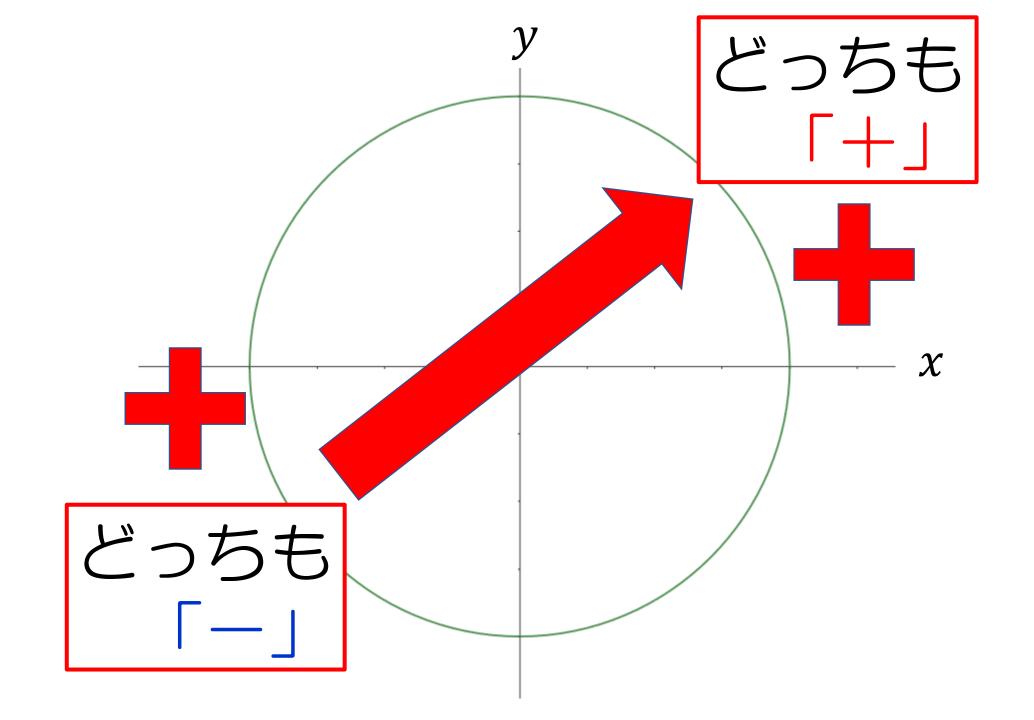
いろいろ考えずにとりあえず

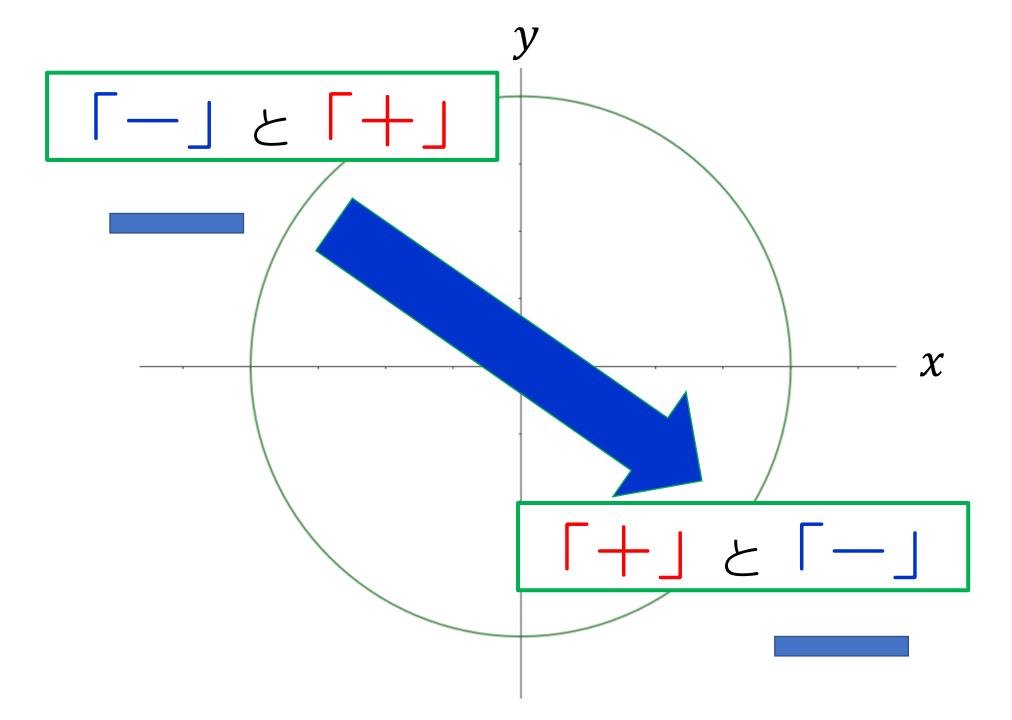
やってみよう!

何となくわかってくると思う!

全部の空欄を埋めて

			平均との差	平均との差	身長の平均との差×
ID	身長	体重	身長	体重	体重の平均との差
1	163.1	62			
2	174.2	65.1			
3	175.1	67			
4	174.8	68.2			
5	169.4	67.2			
6	159.5	64.6			
7	152.0	62.5			
平均					
					(平均の差×平均の差)の平均





これと同じようなのどっかで見た覚えない?



相関係数

2種類のデータの関係性の強さを

「一1から十1」

の間の値で表した数

「r」で表されることが多い

相関の強さ

「Xが大きくなると

「Y」も大きくなる

$$0.7 \le r \le 1.0$$
 強い正の相関

$$0.4 \le r \le 0.7$$
 正の相関

$$0.2 \le r \le 0.4$$
 弱い正の相関

$$-0.2 \le r \le 0.2$$
 相関なし

$$-0.4 \le r \le -0.2$$
 弱い負の相関

$$-0.7 \le r \le -0.4$$
 負の相関

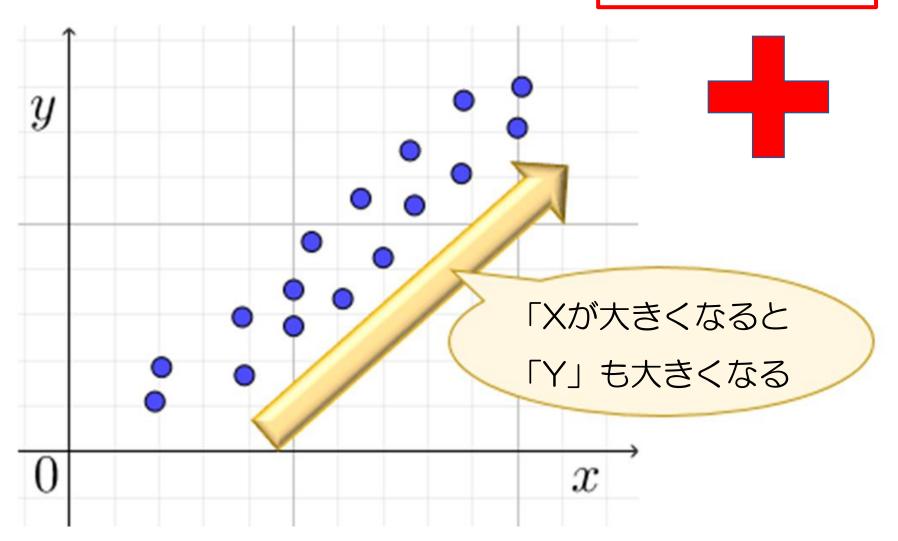
$$-1.0 \le r \le -0.7$$
 強い負の相関

「Xが大きくなると

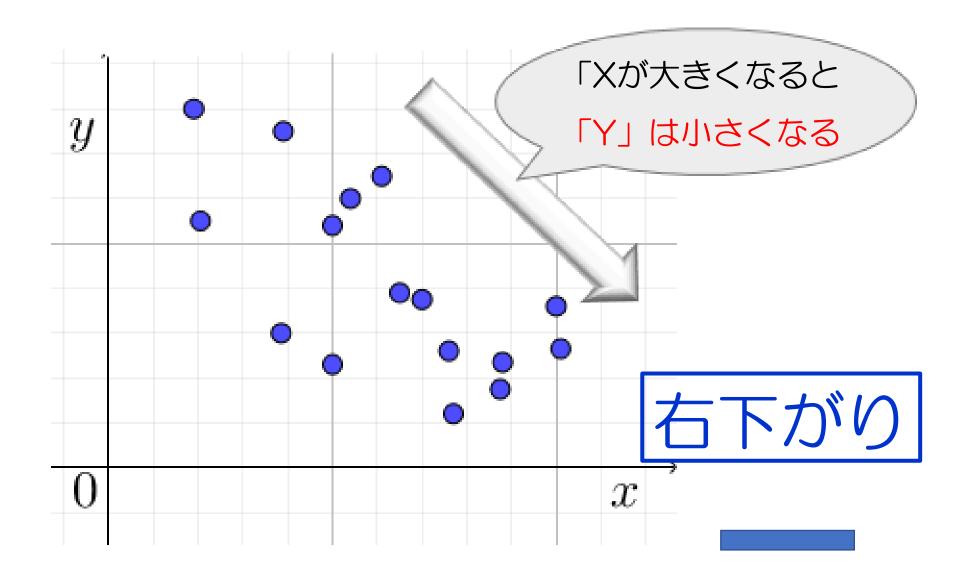
「Y」は小さくなる

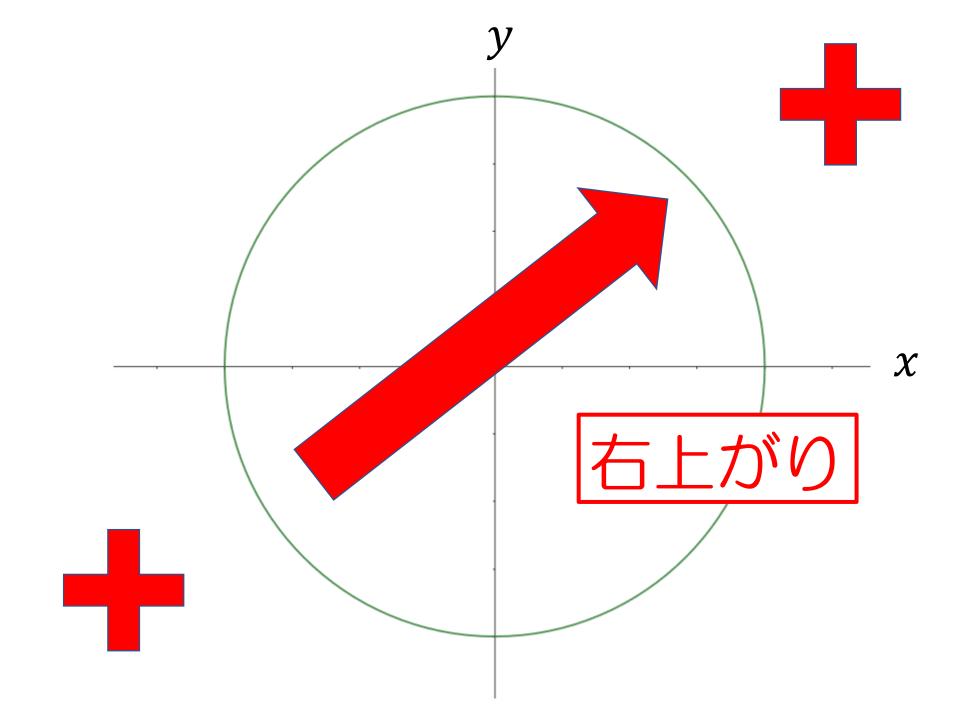
相関係数:0.94

右上がり

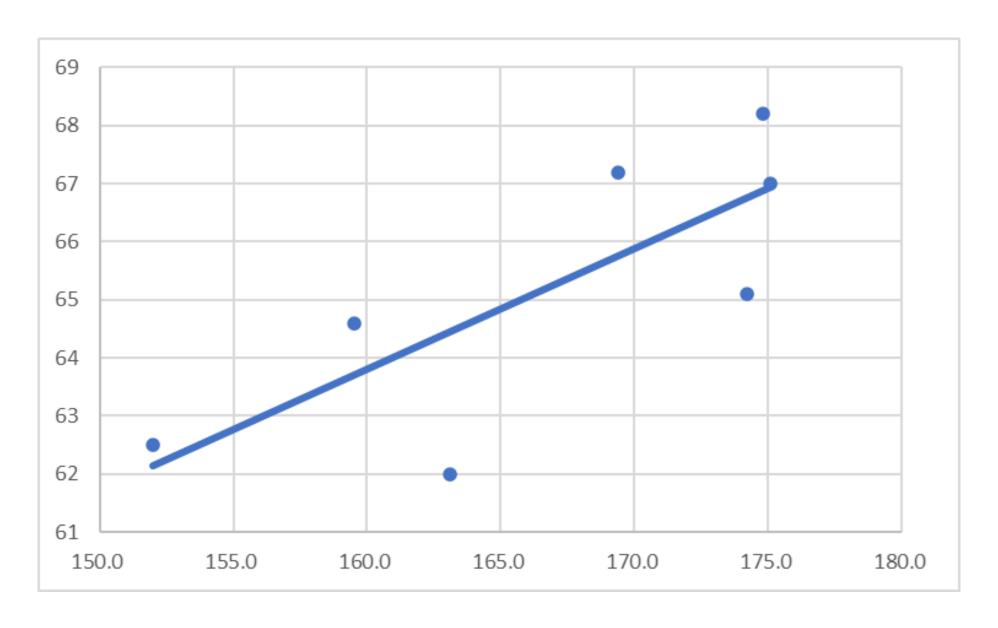


相関係数:一0.74





散布図・近似式で見ても「右上がり」



共分散:「平均の差」×「平均の差」の事

今わかったのは

「右上がりの関係にある」

ってことだけ

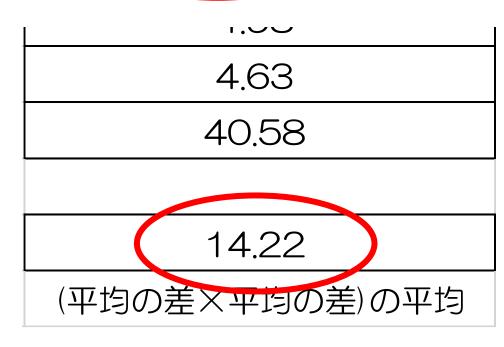
Excelだともっと簡単

Excelの「データ」タブの中にある 「データ分析」 → 「共分散」

こんなの出るはず

	身長	体重
身長	68.63	
体重	14.22	4.876

一瞬!



同じようにやってみて!

シート「共分散2」

- 1 年齢と最高血圧
- 2 年齢と最低血圧
- 3 年齡と年収
- 4 最高血圧と最低血圧
- 5 最高血圧と年収
- 6 最低血圧と年収 の相関は?

こんなの出るはず

	年龄	最高血圧	最低血圧	年収
年齡	174.0			
最高血圧	121.1	113.1		
最低血圧	70.9	52.2	38.8	
年収	1491.4	796.8	604.7	17678.0

「共分散」は向きがわかるだけ…

どれくらい強い関係か 調べるために行うのが

「相関係数の有意差検定」

前に「相関係数」を調べたときは

	強い正の相関	$0.7 \le r \le 1.0$
強さを	正の相関	$0.4 \le r \le 0.7$
出して	弱い正の相関	$0.2 \le r \le 0.4$
おおまかに	相関なし	$-0.2 \le r \le 0.2$
0000007510	弱い負の相関	$-0.4 \le r \le -0.2$
調べた	負の相関	$-0.7 \le r \le -0.4$
	強い負の相関	$-1.0 \le r \le -0.7$

相関係数の基準値

$$r_0 = \sqrt{\frac{4}{n+2}}$$

n:データ数

シート「相関1」 AグループとBグループの相関係数

それぞれ求めてみて

A身長体重身長1体重0.7781

В	身長	体重
身長	1	
体重	0.922	1

基準値は
$$r_0 = \sqrt{\frac{4}{7+2}} = 0.667$$

Α	身長	体重	В	身長	体重
身長	1		身長	1	
体重	0.778) 1	体重	0.922	1

「0.667」より大きいとき

統計的に「相関関係にある」と言える

シート「相関2」

平均気温とビール消費量の相関係数 を求めてみて

基準値は
$$r_0 = \sqrt{\frac{4}{12+2}} = 0.535$$

	平均気温	ビール消費量
平均気温	1	
ビール消費量	0.510	1

「0.535」より小さいから

統計的に「相関関係にない」と言える

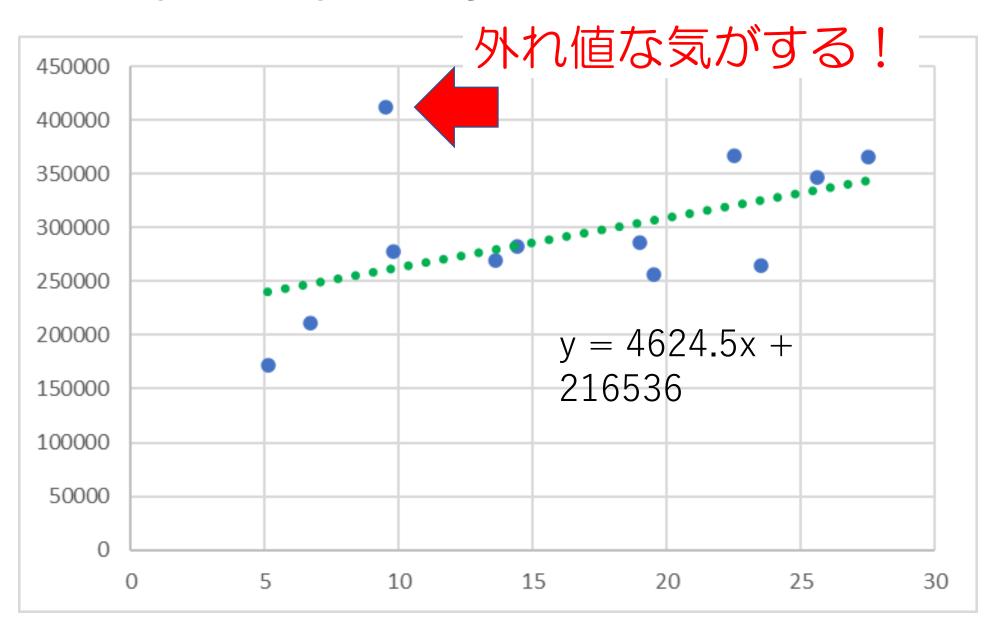
ここでちょっと考えてみる

前やった時も「外れ値」があると

相関係数がむちゃくちゃになった。

「散布図」を使って確認してみる

こんなのになるはず



「外れ値」のデータを抜いて

もう一度相関係数を調べる

基準値は
$$r_0 = \sqrt{\frac{4}{11+2}} = 0.555$$

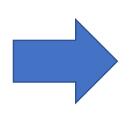
$$r_0 = \sqrt{\frac{4}{12+2}} = 0.555$$

	平均気温	ビール消費量
平均気温	1	
ビール消費量	0.829	1

「0.555」より大きいから

統計的に「相関関係にある」と言える

「外れ値」以外を調べると 相関関係にあった



「外れ値」になった理由が 推測できるかも…

「12月は忘年会などで気温に関係なく ビールの消費量が増えたのではないか」 と推測できる!

相関関係の調べ方はわかったけどいつになったら

「回帰分析」が始まるのか?

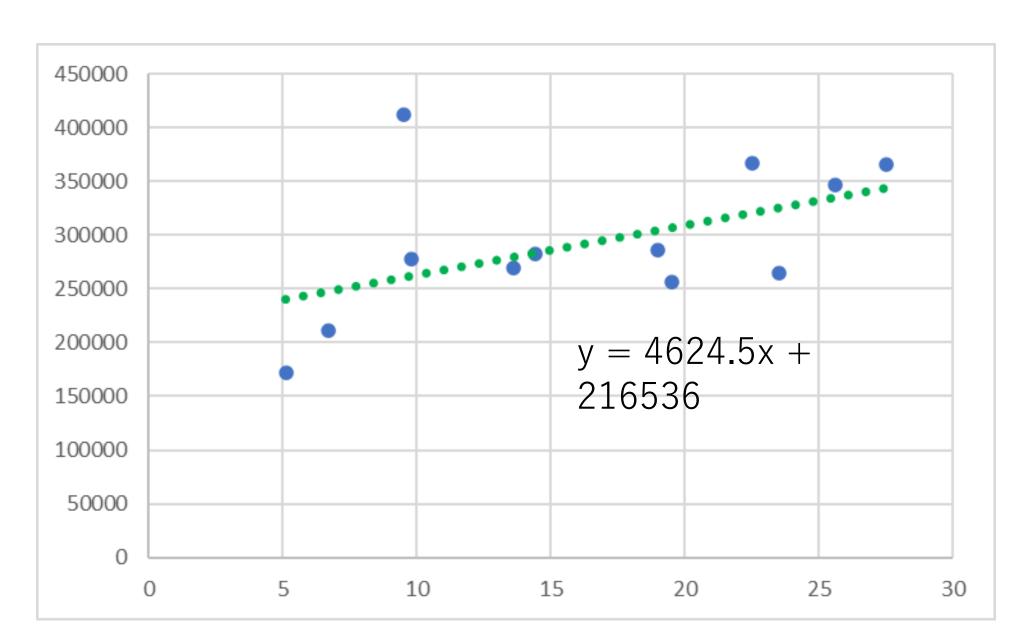
 2択

 量はどれ くらい?

 どれくらい程度?

 答え複数

実はもう「回帰分析」をやってる!



も一回さっきの

「平均気温とビール消費量」に戻って 「回帰分析」をやってみよう

「回帰分析」

入力Y範囲:ビール消費量(11月まで)

入力X範囲:平均気温 (11月まで)

☑ ラバル(<u>L</u>) ☑ 有意水準(<u>O</u>) 95	定数に 0 を使用(<u>Z</u>) %
出力オプション 一覧の出力先(<u>S</u>): 新規ワークシート(<u>P</u>): 新規ブック(<u>W</u>) 	ここをチェック
残差	

こんなのになるはず

	帰統計		
重相関 R	0.829		
重決定 R2	0.688		
補正 R2	0.653	<u> </u>	
標準誤差	35696.891	さっきと	
観測数	11.000		,
分散分析表			
	自由度	変動	
回帰	自由度 1.000	変動 25271620194.279	
回帰残差			
	1.000	25271620194.279	
残差	1.000	25271620194.279 11468412424.267	
残差	1.000	25271620194.279 11468412424.267	
残差	1.000 9.000 10.000	25271620194.279 11468412424.267 36740032618.546	

「相関分析と回帰分析の違い」

相関係数がメイン。1対1のみ

XとYの関係性を見るだけ

XとYの関係式は出てこない

どっちが原因とかは考えない

相関分析

1対1でも、1対複数でも!

XからみたYの変化を見る

数式 Y = aX + b を立てて予測

Xが原因でYが結果として進める

回帰分析

「相関分析と回帰分析の違い」

回帰分析

1対1でも、1対複数でも!

XからみたYの変化を見る

数式 Y = aX + b を立てて<u>予測</u>

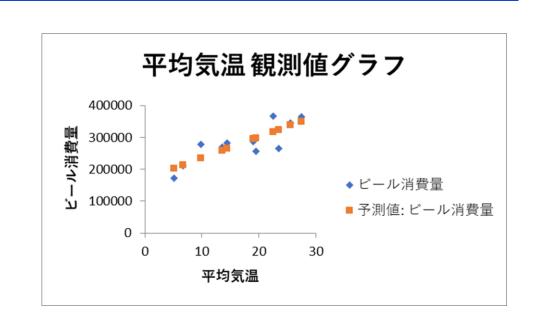
Xが原因でYが結果として進める

「回帰分析」 新たなデータXからデータY

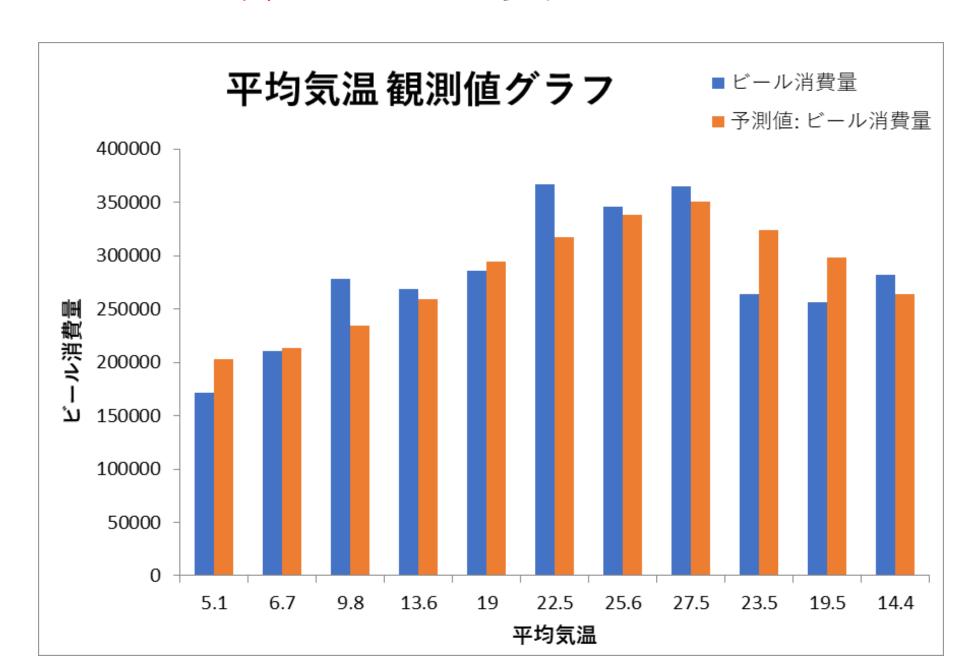
を予測する

$$Y = aX + b$$

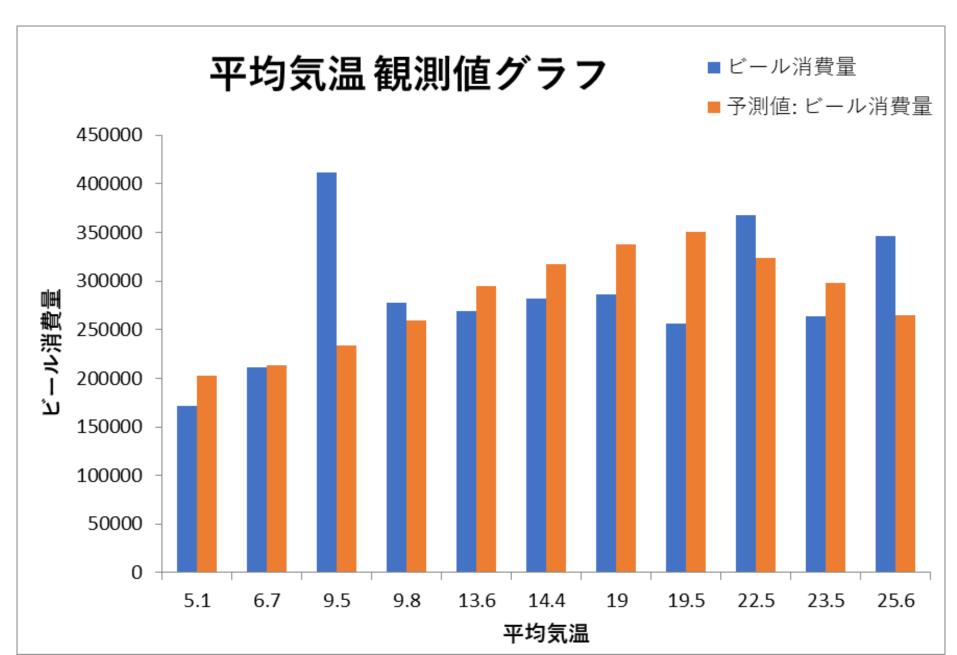
横のほうに出てる グラフ を見てみて



グラフを棒グラフに変えると



元データを昇順にすると完成!



「相関分析と回帰分析の違い」

回帰分析

1対1でも、1対複数でも!

XからみたYの変化を見る

数式 Y = aX + b を立てて予測

Xが原因でYが結果として進める

「回帰分析」 新たなデータXからデータY を予測する

$$Y = aX + b$$

次はこの式の意味を考える! さっきの表に戻って

次に見るのはココ

回帰統計		
重相関 R	0.829	
重決定 R2	0.688	
補正 R2	0.653	
標準誤差	35696.891	
観測数	11.000	
分散分析表		
	自由度	変動
回帰	自由度 1.000	変動 25271620194.279
回帰残差		2 3 2 7 2
	1.000	25271620194.279
残差	1.000	25271620194.279 11468412424.267
残差	1.000	25271620194.279 11468412424.267
残差	1.000 9.000 10.000	25271620194.279 11468412424.267 36740032618.546

Yを「ビール消費量」 Xを「平均気温」にしたから

これを代入すると…

$$Y = aX + b$$

$Y = 6573 \times X + 169580$

Y:「ビール消費量」

X:「平均気温」

予測できること

・平均気温が1°上がると

消費量が6573増える

平均気温が0°では消費量は169580

「相関分析と回帰分析の違い」

回帰分析

1対1でも、<u>1対複数でも!</u>

XからみたYの変化を見る

数式 Y = aX + b を立てて予測

Xが原因でYが結果として進める

さっきやったのは

「(単)回帰分析」(1対1)

問題設定は

「家賃」と「面積・築年数・時間」の関係を調べたい

これをメインに調べたい

「データ分析」 ⇒ 「重回帰分析」

入力Y範囲:家賃

入力X範囲:面積 · 築年数 · 時間全部

(☑ ラベル(<u>L</u>) ☑ 有意水準(<u>O</u>)	□ 定数に 0 を使用(<u>Z</u>) 95 %
	出力オプション 一覧の出力先(<u>S</u>): 新規ワークシート(<u>P</u>): 新規ブック(<u>W</u>) 	\$E\$2
	残差 □ 残差(<u>R</u>) □ 標準化された残差(<u>T</u>)	 □ 残差ケラスの作成(<u>D</u>) ☑ 観測値グラフの作成(<u>I</u>)

	係数
切片	40900
面積	642.32
築年数	-213.3
駅までの時間	-507.3

これになった?

$$Y = 642X_1 - 213X_2$$
$$-507X_3 + 40899$$

Y :家賃 X_1 :面積

 X_2 : 築年数 X_3 : 時間

$Y = 642X_1 - 213X_2$ $-507X_3 + 40899$

Y :家賃 X_1 :面積

 X_2 : 築年数 X_3 : 時間

家賃は、基本が40899円で

面積が1増えると642円上がり

築年数が1増えると213円安くなり

時間が1増えると507円安くなる

ここから先で大事な話

「パラメトリック」

「ノンパラメトリック」

特徴	パラメトリック	ノンパラメトリック
データの分布	特定の分布を仮定 (通常は正規分布)	特定の分布を仮定しない
分析対象	平均、標準偏差など	順位
代表的な手法	t検定	マン・ホイットニーのU検定 ウィルコクソンの符号順位検定
メリット	小さな差も検出できる	適用範囲が広い

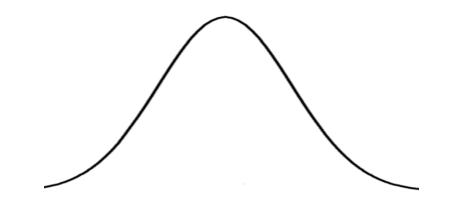
「パラメトリック」

母集団の分布(正規分布とか)

が事前にわかってるとき

この分布に従ってパラメータを

統計的に推測する(t検定とか)



「ノンパラメトリック」

母集団の分布がわからないとき

分布がわからないとして推測 (どんな分布でもOK)

・母集団に正規性がなく、

サンプルサイズが小さいとき

• 極端な外れ値があるけど無視できないとき

- マンホイットニーのU検定、
- ウィルコクソンの符号順位検定

「使い分け」

まず、パラメトリックが無理かを考える

ダメなときはノンパラメトリックな手法を用いる

(パラメトリックな時に、 ノンパラメトリックを使っても いいけど検出力は不利になる) これで

「医療統計」終わり

テストはPCを使ってやります

授業でやった

記述統計・推測統計の中で

「提出」してないやつを重点的に!

