医療統計学

「医療統計学」

- 1 基本統計量 ヒストグラム
- 2 記述統計 推測統計

相関係数

3 仮説検定

×二乗検定

t 検定

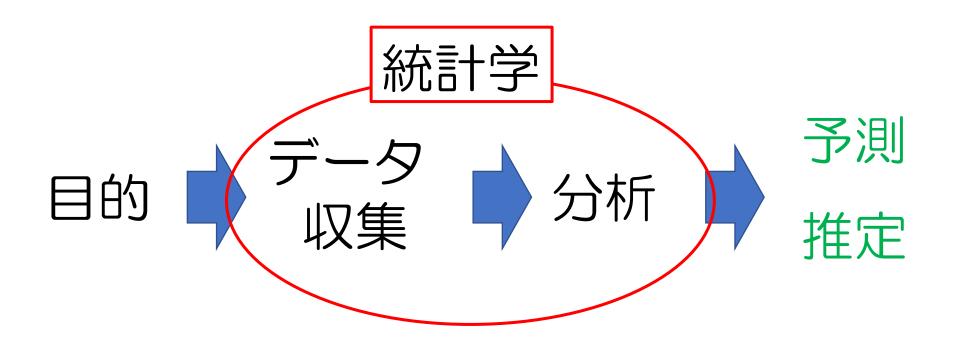
回帰分析

「統計学」とは

目的に応じてデータを収集して、

分析することで「予測」や「推定」

をする材料を作り出す学問



「医療統計学」

- 1 基本統計量 ヒストグラム
- 2 記述統計 推測統計

相関係数

3 仮説検定

×二乗検定

t 検定

回帰分析

「統計」を進めて行く方法

目的に応じてデータを収集して分析

集めたデータ(数値)の特徴を

「パラメーター」や

「表・グラフ」

を使って分析する

あるテストの結果

54	48	90	78	81
63	70	62	77	83

これだけでは

データの特徴がわからないから

「数值」(特性值、統計量)

を出してみる

あるテストの結果

54	48	90	78	81
63	70	62	77	(83)

特性値(統計量) 一

最高 :90 点

最低 : 48 点

平均 : 70.6点

中央値:73.5点 🔷

1個1個のことを変量

「ちょうど真ん中の値」

2つあるときは

足して2で割る

「平均值」 \bar{x}

全部の変量を足して サンプルの数で割ったもの

$$\bar{x} = \frac{x_0 + x_1 + x_2 + \sim x_n}{n}$$

$$\bar{x} = \frac{54 + 48 + 90 \sim +83}{10} = 70.6$$

「中央値」 (メディアン)

変量を並べたとき ちょうど真ん中の値

「2、5、8、10,11」なら「8」

「2、4、7、8、10、11」なら

[7.5]

「範囲」(レンジ)

簡単に言うと「変量の幅」

変量の中の

<u>「最大値」と「最小値」の引き算</u>

「1、2、4、7、8、10、11」なら 「レンジ 10」

データを大まかな段階(階級)に分ける

点数(階級)	
0-19	
20-39	
40-59	
60-79	
80-100	

幅は自分で決めていい

それぞれの階級の真ん中の値を

点数(階級)	階級値	
0-19	10	
20-39	30	
40-59	50	
60-79	70	
80-100	90	

点数(階級)	階級值	度数
0-19	10	O
20-39	30	O
40-59	50	2
60-79	70	5
80-100	90	3 /

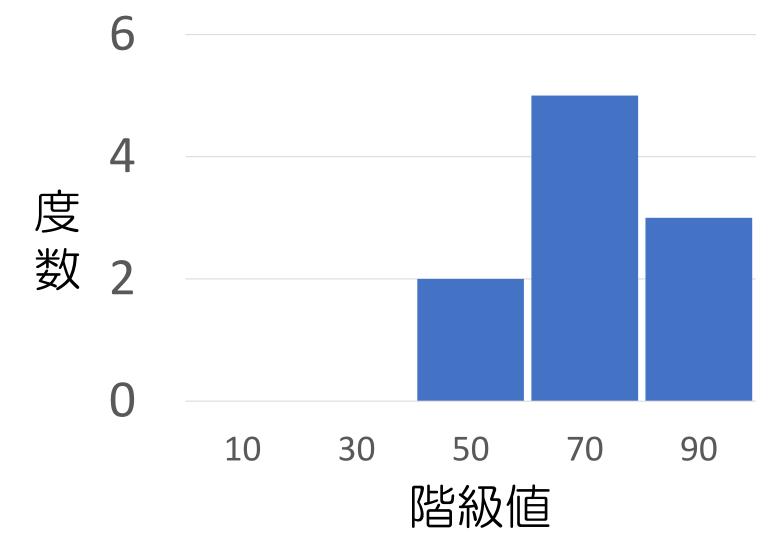
階 級 る

幅は自分で決めていい

点数(階級)	階級値	度数
0-19	10	O
20-39	30	O
40-59	50	2
60-79	70	5
80-100	90	\ 3 /

階 級 る

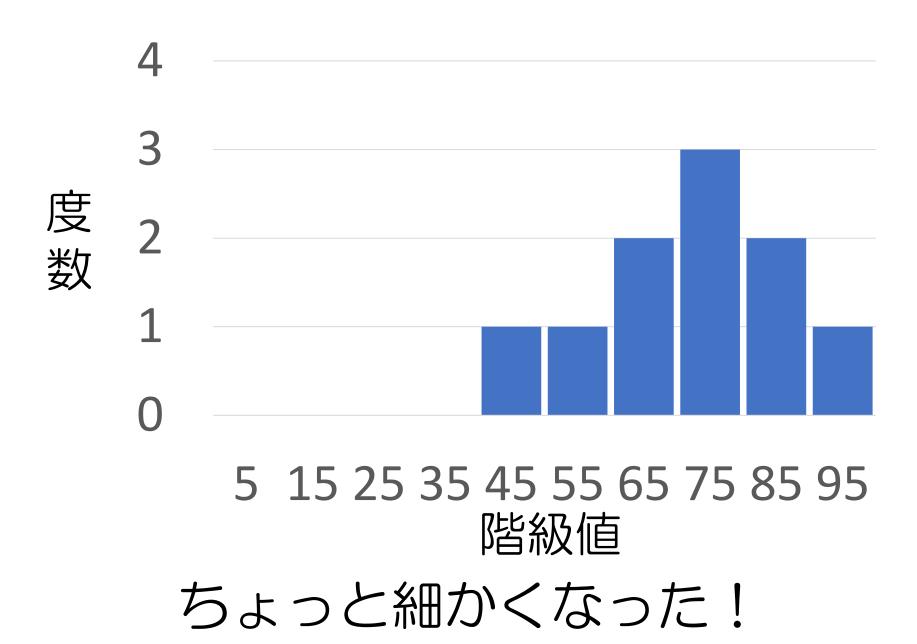
階級の真ん中



まだちょっとわかりにくい気がする!

階級を細かくすると

階級	階級値	度数
0-9	5	O
10-19	15	O
20-29	25	O
30-39	35	O
40-49	45	1
50-59	55	1
60-69	65	2
70-79	75	3
80-89	85	2
90-100	95	1



「最頻値」(モード)

階級	階級値	度数						
0-9	5	O						
10-19	15	O						
20-29	25	O						
30-39	35	O					1	
40-49	45	1						
50-59	55	1						
60-69	65	2						
70-79	(75)	(3)						
80-89	85	2						
90-100	95	1						
	5 15	25 35	45	55	65	75	8 5	95

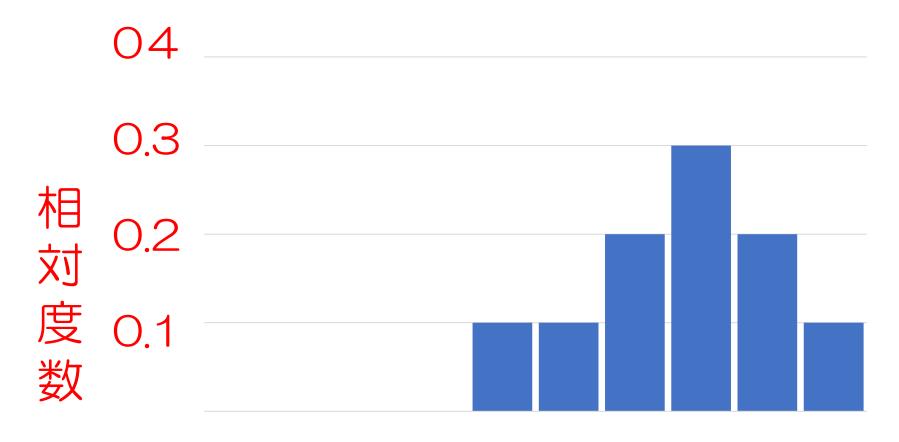
1番度数が大きいところの階級値

もう1歩進んで

階級	階級値	度数
0-9	5	O
10-19	15	O
20-29	25	O
30-39	35	O
40-49	45	1
50-59	55	1
60-69	65	2
70-79	75	3
80-89	85	2
90-100	95	1

全体を「1」としたときの割合

階級	階級値	度数	相対度数
0-9	5	O	O
10-19	15	O	O
20-29	25	O	O
30-39	35	O	O
40-49	45	1	0.1
50-59	55	1	0.1
60-69	65	2	0.2
70-79	75	3	0.3
80-89	85	2	0.2
90-100	95	1	0.1



5 15 25 35 45 55 65 75 85 95

この棒グラフの面積を足すと「1」

今回は、10階級に分けたけど

どれくらいに分けたら

わかりやすい?

階級	階級値	度数
0-9	5	0
10-19	15	O
20-29	25	O
30-39	35	O
40-49	45	1
50-59	55	1
60-69	65	2
70-79	75	3
80-89	85	2
90-100	95	1

「階級の数」

大まかにやけど、t 切りの時

√n 個の階級に分ければ わかりやすい!

例えば、100個のサンプルなら「10階級」

「階級の数」

 \sqrt{n} 個の階級に分ける!

このとき、サンプルの中の

「最大値」から「最小値」を引いて

「階級数」で割ると

区切る目安になる!

今回なら

54	48	90	78	81
63	70	62	77	83

最高 :90 点

最低 : 48 点

サンプル数10だから

$$\sqrt{10} \cong 3$$

$$\frac{90-48}{3}=14$$

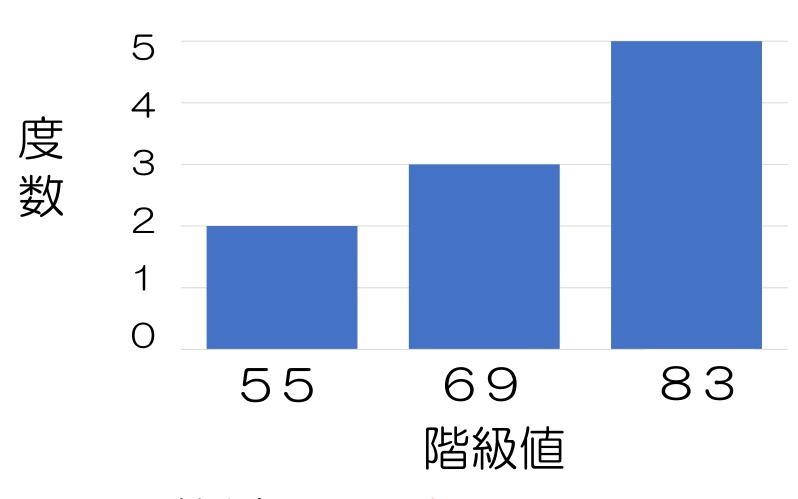
「14区切りで3個」

の階級にわければいい!

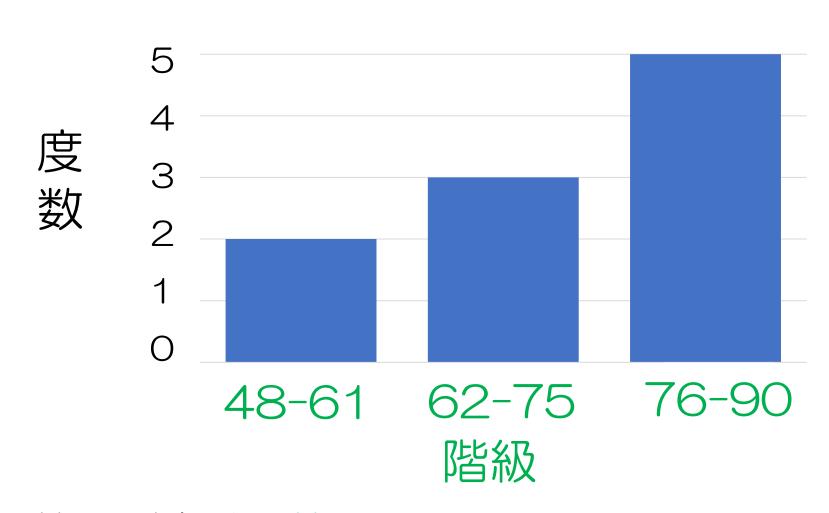
「14区切りで3個」

同じようにやって、 いるとこだけとってみると

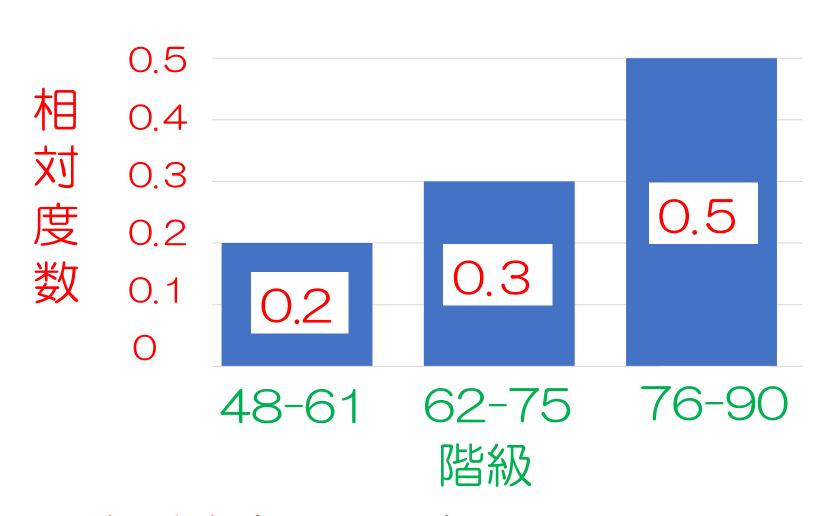
点数(階級)	階級値	度数
48-61	55	2
62-75	69	3
76-90	83	5



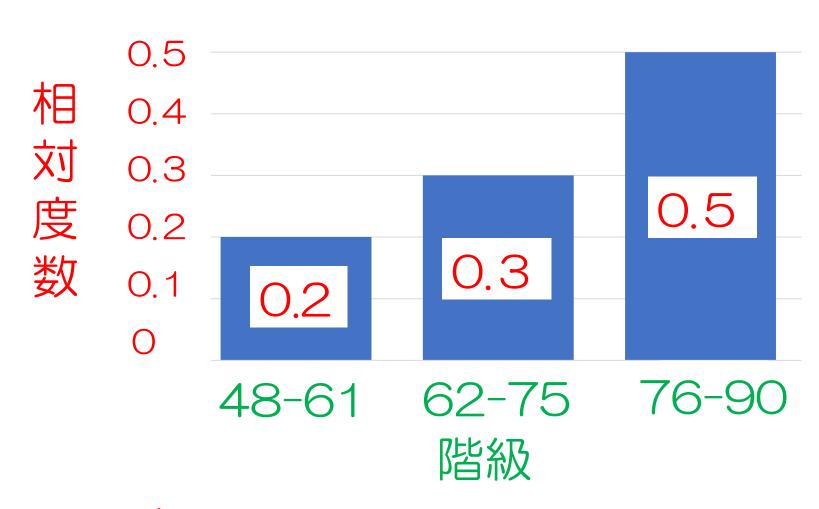
微妙にわかりにくい



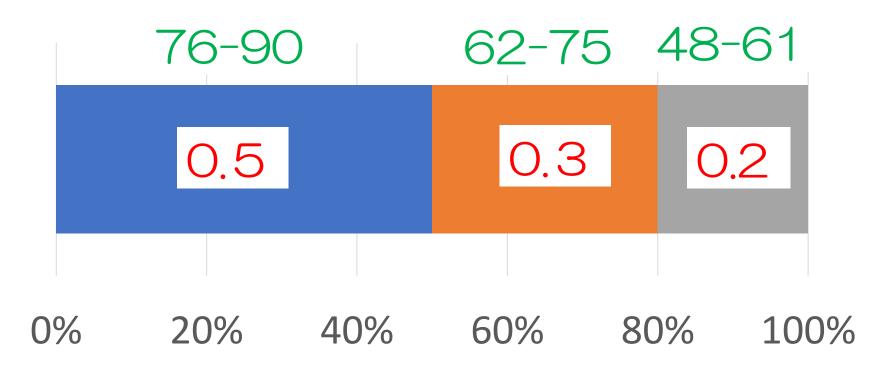
階級値を階級に変えてみる



相対度数に変えてみる



面積が「1」になるんだから



こういうグラフもあり!

言いたいことが、一番わかるグラフを

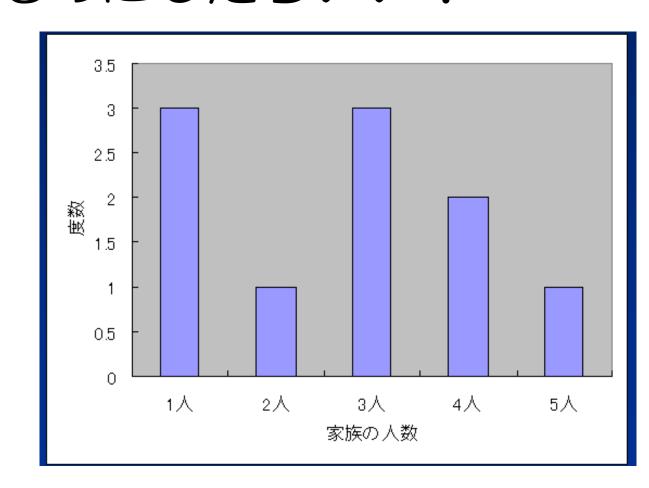
選べばいい

グラフは、

「棒グラフ」

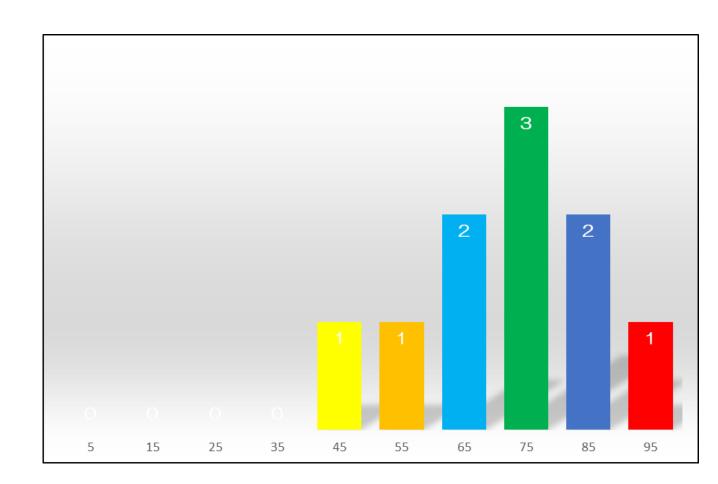
じゃないとあかんの?

グラフは、何でもいい! 目的によってわかりやすい ものにしたらいい!

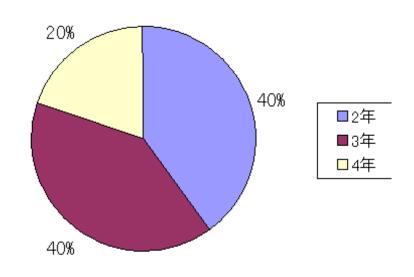


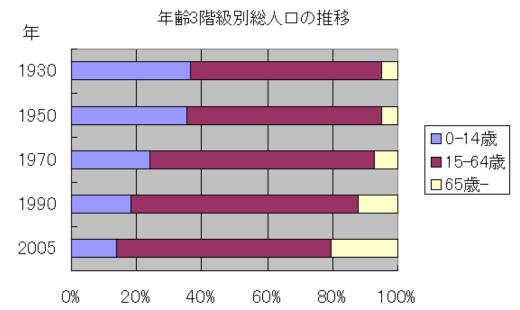
こんな風に、

いろいろ変えまくっても



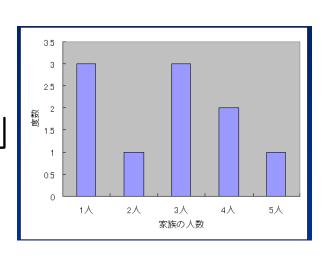
わかりやすければ何でもいい!



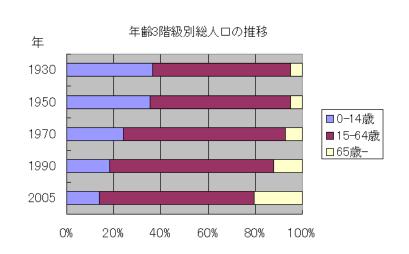


ある程度有名なものとしては

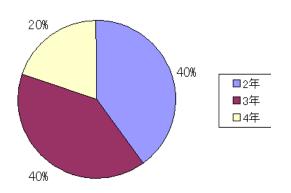
大小を比較したい 「棒グラフ」



%を比較したい 「帯グラフ」



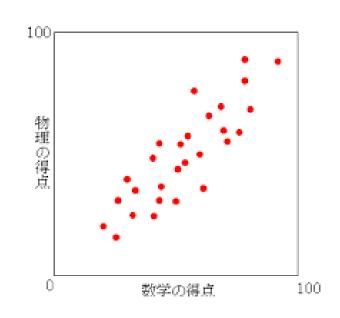
割合をみせたい 「円グラフ」



ある程度有名なものとしては

時間変化をみせたい 「折れ線グラフ」

2つの量の関係をみせたい「散布図」



ところで

「度数分布表」だけで

階級	階級値	度数
0-9	5	Ο
10-19	15	Ο
20-29	25	Ο
30-39	35	Ο
40-49	45	1
50-59	55	1
60-69	65	2
70-79	75	2
80-89	85	2
90-100	95	1

分析を終わっていいの?

「平均」とか何にも 使ってないけど…

テスト1 20 20 0 0 0 5 7 8 8 8 8 8 8 8 7 7 8 18 13 6 2 1

どのテストも平均は「8点」

分析結果が、同じはずがない・₹

他の分析方法が必要!

この点数を例に考えてみよう!

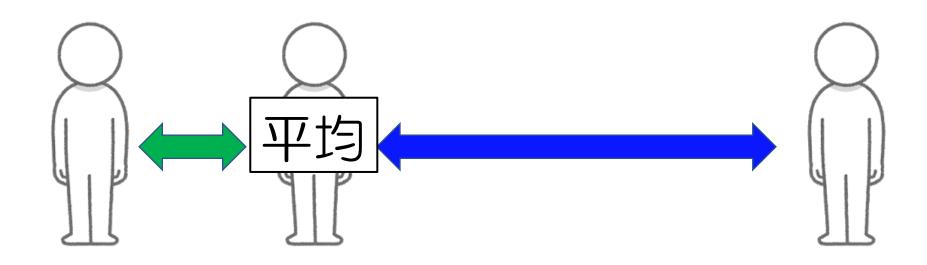
平均值「8」 平均よりかなり上 平均より下だから 成績はいい? 成績は悪い?

「偏差」

まずは、それぞれの変量が

平均値から

どれくらい離れてるのか



「偏差」

それぞれの変量の

平均値からの差

[2, 5, 9, 11, 13]

平均値「8」を引く

[-6, -3, 1, 3, 5]

「偏差」

偏差 「-6、-3、1、3、5」

「マイナス」の値もあるから

比較しにくいなぁ

「一」があるからわかりにくい!

全部「2乗」にして「プラス」に

してしまう!!

偏差 「-6、-3、1、3、5」

T36, 9, 1, 9, 251

これで分かりやすくなった!

「36、9、1、9、25」

これ全部足してサンプル数で割ると…

全体のばらつき具合がわかる!

$$\frac{36 + 9 + 1 + 9 + 25}{5} = 16$$

(ばらつき具合の平均)

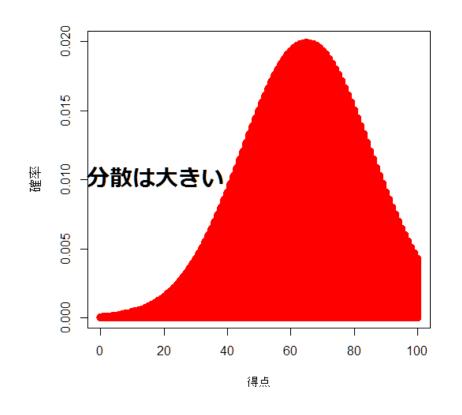
全体のばらつき具合の平均

$$\frac{36+9+1+9+25}{5} = 16$$
これを「分散」

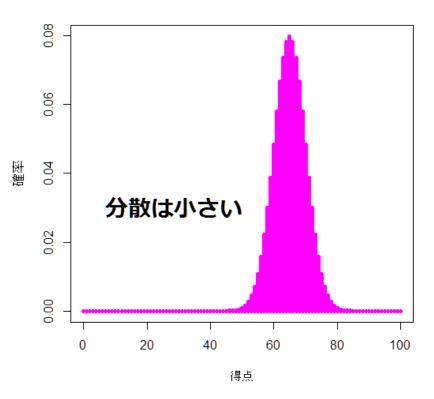
分散が大きい ⇒ データがばらついてる

分散が小さい ⇒ "ばらついてない

分散が大



分散が小



ばらついてる

ばらついてない

「分散が16」はわかったけど… あんまり意味がわからん!

ばらつきが<u>大きい?</u> 小さい? そもそも<u>単位は何</u>?

わかりにくいのは 2乗したせいか! 「標準偏差」

2乗したものを元に戻してみよう

「分散 16」

$$\sqrt{16} \neq 4$$

これを「標準偏差」

単位が「点数」に

点数のばらつき具合がわかった!

結局何がわかったのか

2	5	9	11	13
---	---	---	----	----

平均值「8」

結局何がわかったのか

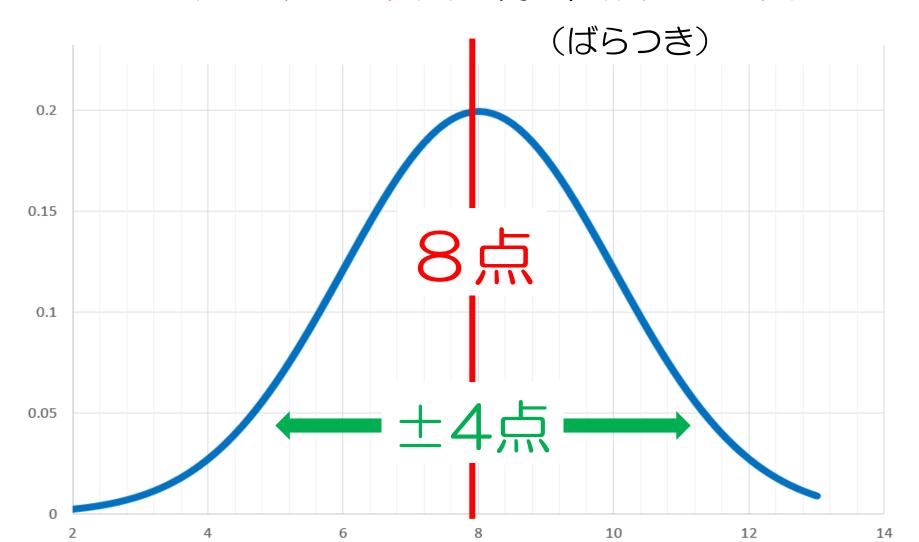
2 !	5 9	11	13
-----	-----	----	----

「平均值8点、標準偏差4点」

のテストという事がわかった!

グラフでみてみると

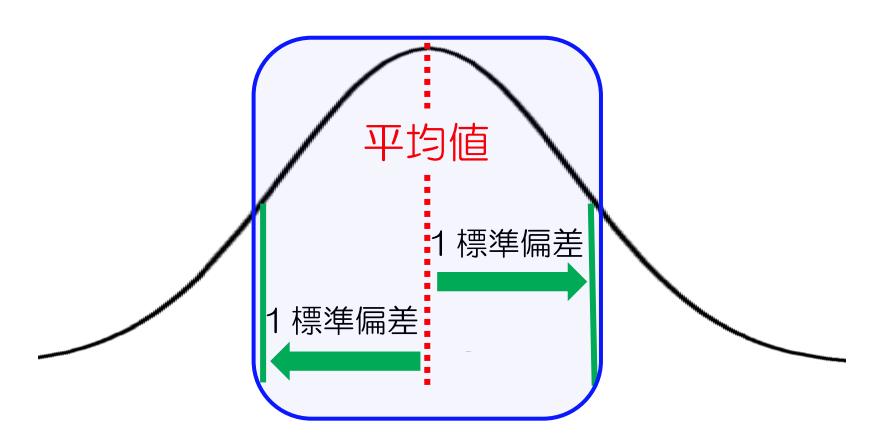
「平均值8点、標準偏差4点」



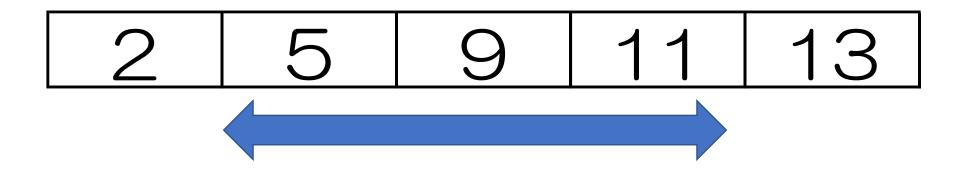
ここで大事なこと

平均値 土1標準偏差の中に

全データの「68%」がある

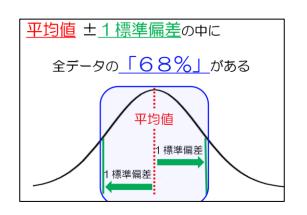


つまり



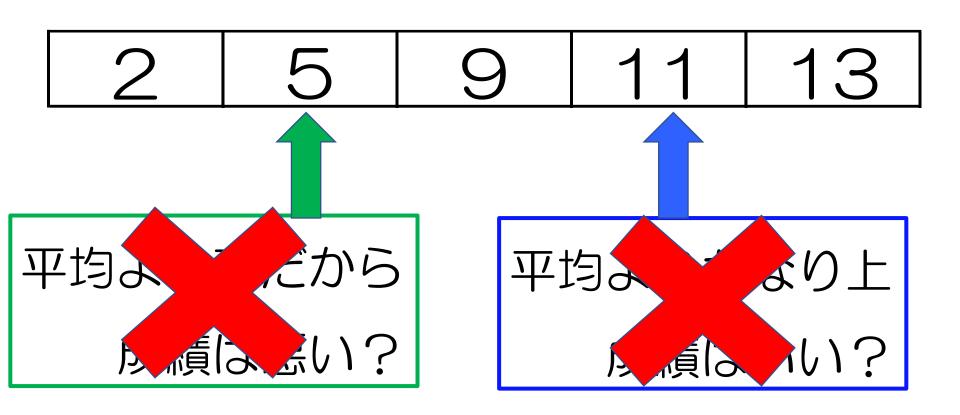
結論!

平均値8点±4点は普通



(普通:全データの68%内にある)

平均值「8」



この仮説は間違い!